• Title/Summary/Keyword: rock tunnel

Search Result 2,163, Processing Time 0.03 seconds

DEPTH AND LAYOUT OPTIMIZATIONS OF A RADIOACTIVE WASTE REPOSITORY IN A DISCONTINUOUS ROCK MASS BASED ON A THERMOMECHANICAL MODEL

  • Kim, Jhin-Wung;Koh, Yong-Kwon;Bae, Dae-Seok;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.429-438
    • /
    • 2008
  • The objective of the present study is the depth and layout optimizations of a single layer, high level radioactive waste repository in a discontinuous rock mass with special joint set arrangements. A single layer repository model, considering variations in the repository depths, pitches, and tunnel spacings, is used to analyze the thermomechanical interaction behavior. It is assumed that the repository is constructed in saturated granite with joints; the PWR spent fuel in a disposal canister is installed in a deposition drift which is then sealed with compacted bentonite; and the backfill material is filled in the repository tunnel. The decay heat generated by the high level radioactive wastes governs the thermomechanical behavior of the near field rock mass of the repository. The temperature and displacement behavior of the repository is influenced more by the pitch variations than the tunnel spacing and repository depth. However, the stress behavior is influenced more by the repository depth variations than the pitch and tunnel spacing. For the final selection of the tunnel spacing, pitch, and repository depth, other aspects such as the nuclide migration through a groundwater flow path, construction costs, operation costs, and so on should be considered.

A case histories on the detection of weak zone using electrical resistivity and EM surveys in planned tunnel construction site (터널 건설 예정지구에서의 전기비저항 탐사와 전자탐사의 적용을 통한 연약대 탐지에 대한 사례 연구)

  • 권형석;송윤호;이명종;정호준;오세영;김기석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.63-70
    • /
    • 2002
  • In tunnel construction, the information on the rock quality and the location of fault or fracture are crucial for economical design of support pattern and for safe construction of the tunnel. The grade of rock is commonly estimated through the observation with the naked eye of recovered cores in drilling or from physical parameters obtained by their laboratory test. Since drilling cost is quite expensive and terrains of planned sites for tunnel construction are rough in many cases, however, only limited information could be provided by core drilling Electrical resistivity and EM surveys may be a clue to get over this difficulty. Thus we have investigated electrical resistivity and EM field data providing regional Information of the rock Quality and delineating fault and fracture over a rough terrain. In this paper, we present some case histories using electrical resistivity and EM survey for the site investigation of tunnel construction. Through electrical resistivity and EM survey, the range and depth of coal seam was clearly estimated, cavities were detected in limestone area, and weak zones such as joint, fault and fracture have been delineated.

  • PDF

Modern High-Power TBM with Advanced Procurement System (오늘날의 고성능 TBM과 선진 장비조달 방안)

  • Jee, Warren W.
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.161-168
    • /
    • 2013
  • Recently, the application of High-Power mechanized tunnelling technology has been expended around the world. Especially, High-power Modern TBM machines are used in a successful results. Essential for the great success of this modern TBM in difficult rock conditions are based on the development of machine power, suitable better cutter developments, and also developed assesment technology regards on the extensive site investigations. OPP (Owner Procurement Process) system is a proven alternative contract delivery method that is potentially applicable to many tunnel projects. Using the OPP, the owner specifies and procures the TBMs and tunnel lining in advance of the tunnel contract procurement and provides TBM to a tunnel contractor with a goals of reducing project risks and accelerating project schedule. Depending on the blasting vibrations and noises, mechanized tunnelling will be more important particularly in city areas.

Stability Assessment of Concrete Lining and Rock Bolts of the Adjacent Tunnel by Blast-Induced Vibration (발파진동이 인접한 터널의 콘크리트 라이닝과 록볼트의 안정성에 미치는 영향평가)

  • Jeon, Sang-Soo;Kim, Doo-Seop;Jang, Yang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.33-45
    • /
    • 2007
  • In this study, the blast-induced vibration effects on the structural stability of the adjacent tunnel were estimated with respect to the allowable peak particle velocity (PPV). The blasting distance from the tunnel satisfying the allowable PPV was estimated based on the analytical solutions, United States Bureau of Mines (USBM) suggestions, and the equations used in the subway in Seoul. The allowable blasting distance was estimated by using finite difference analysis (FDA) and the behavior of the concrete lining and rock bolts was examined and the stability of those was estimated during the blast. Research results show that the blast-induced vibration effects on the structural stability are negligible for the concrete lining but relatively large for the rock bolts.

Prediction of Geological Condition Ahead of Tunnel Face Using Hydraulic Drilling Data (유압 천공데이터를 이용한 터널 굴진면 전방 지질상태 예측)

  • Kim, Kwang-Yeom;Kim, Chang-Yong;Kim, Kwang-Sik;Yim, Sung-Bin;Seo, Kyoung-Won
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.483-492
    • /
    • 2009
  • During construction of a tunnel and underground structure, it is very important to acquire accurate information of the rock mass will be excavated. In this study, the drill monitoring method was applied for rapid prediction of geological condition ahead of the tunnel face. Mechanical data(speed, torque and feed pressure) from drilling process using a hydraulic drilling machine were analyzed to assess rock mass characteristics. Rock mass information acquired during excavation from drilling monitoring were compared with results from horizontal boring and tunnel seismic profiling(TSP). As the result, the drilling monitoring method is useful to assess rock mass condition such as geological structures and physical properties ahead of the tunnel face.

Elasto-plastic Analysis of Circular Tunnel with Consideration of Strain-softening of GSI Index (GSI 지수의 변형률 연화를 고려한 원형터널의 탄소성 해석)

  • Lee, Youn-Kyou;Park, Kyung-Soon
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.49-57
    • /
    • 2010
  • For the elasto-plastic analysis of a circular tunnel driven in a strain-softening rock mass subjected to a hydrostatic in-situ stress condition, this study suggests a convenient elasto-plastic analysis scheme which takes the strain-softening of GSI index into account and demonstrates its potential as a numerical tool in designing a circular tunnel. The suggested numerical scheme was developed by modifying the previous elasto-plastic procedure proposed by Lee & Pietruszczak(2008). With the assumption that GSI index of rock mass adjacent to the tunnel surface may be degraded due to the damage caused by the blasting and excavation, the concept of the strain-softening of GSI index was invoked. The concept provides a useful tool considering the strain-softening of the strength parameters appearing in the generalized Hoek-Brown criterion because these parameters can be evaluated empirically by use of GSI. In order to check the validity of the proposed scheme, the elasto-plastic analyses for circular tunnels were performed in various analysis conditions and the results were discussed.

An experimental study on behavior of tunnel in jointed rock mass (절리암반내 터널라이닝 거동에 관한 실험적 연구)

  • Oh, Young-Seok;Park, Yong-Won;Yoon, Hyo-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.315-326
    • /
    • 2004
  • This study performed model tunnel tests in order to investigate the influence of discontinuity condition of rock mass to the stress and deformation of tunnel lining. Tests were carried out changing the direction of main joint and lateral earth pressure condition of rock mass. Test results revealed that the axial force in tunnel lining showed a tendency of decrease with the presence of joints. It decreased much with the increase of lateral earth pressure coefficient. And, it also showed that the location or maximum displacement and maximum stress in lining were changed by the direction of main joint of rock mass. The tangential stress and normal stress showed the difference above the maximum twenty times as lateral earth pressure coefficient due to effect of joints increased. Also, these tendencies of concentration of tensile stress in tunnel lining were confirmed by elastic theory.

  • PDF

An Assessment of the Excavation Damaged Zone in the KAERI Underground Research Tunnel (원자력연구원 내 지하처분연구시설의 암반 손상대 발생영향 분석)

  • Kim, Jin-Seop;Kwon, Sang-Ki;Cho, Won-Jin
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.21-31
    • /
    • 2009
  • An excavation damaged zone (EDZ) is created by fracturing, excavation or stress redistribution of tunnels. In this zone the mechanical and hydraulic properties of rock are changed, which makes additional cracks and serves as a dominant pathway of groundwater flow. In this study, an assessment on an EDZ size was practiced by the measurement of the deformation modulus at the KAERI underground research tunnel (KURT), and the information was applied to the modelling analysis using FLAC2D software. The EDZ at KURT fell into the range of 0.6~1.8m and the deformation moduli of the EDZ generally correspond to about 40% of intact rock mass. With a consideration of the EDZ in numerical analysis, tunnel displacements increased by about 65% and the maximum principal stress decreased to 58% from the case without EDZ. The plastic zone of the tunnel was enlarged to the crown and invert zones of the tunnel within the range of the length of rock bolts. About 2% of the total tunnel displacement with EDZ was suppressed by the KURT support system. It is anticipated that the investigation of an EDZ can be used as an important and fundamental research for validating the overall performance of a high level waste disposal system.

Evaluation of Penetration Rate and Cutter Life of TBM in Jook-Ryung Tunnel (죽령터널에서의 TBM 굴착속도 및 커터수명 평가연구)

  • Park Chul-Whan;Synn Joong-Ho;Park Yeon-Jun;Jeon Seok-Won;An Hyung-Jun
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.378-386
    • /
    • 2005
  • Jook-Ryung roadway tunnel was constructed by drill-blast after pilot tunnelling by 2 TBMS. nis report analyzes the data for TBM performance in the total length of 7.3 km for the two pilot tunnels. Net penetration rates were recorded as high as 2.3 m/h and 2.0 m/h for the two different directions while degrees of operation were $31.4\%$ and $33.3\%$, respectively. The cutter lives for No.2 tunnel were evaluated $200\~280\;m^3/c$ and around 400 m/set as high as for Meraker 10 km tunnel in Norway. The relationship between net penetration rate and characteristics of rock mass which were obtained by RMR and TSP measurement, coincides with the prior studies. This kind of evaluation is expected to be used to design TBM tunnelling and to help to perform the TBM operation effectively

Numerical Analysis on the Effect of Fractured Zone on the Displacement Behavior of Tunnel (파쇄대가 터널 주변 암반의 변형 거동에 미치는 영향에 대한 수치해석적 연구)

  • Kim Chang-Yong;Kim Kwang-Yeom;Moon Hyun-Koo;Lee Seung-Do;Baek Seung-Han
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.218-231
    • /
    • 2006
  • Anisotropic/heterogeneous rock mass shows various deformation behavior types due to tunnelling because deformation behavior is largely controlled by the spacial characteristics of geological factors such as faults, joints and fractured zone in rock mass. In this paper 2-dimensional numerical analysis on the several influencing factors is performed considering fractured zone located near tunnel. This numerical analysis shows that deformation behavior of tunnel are very different according to the width and the location of fractured zone and supper method. However, 3-dimensional analysis is necessary to consider 3-dimensional geometrical characteristics sufficiently since discontinuity and fractured zone have 3-dimensional geometry. Also flexible design/construction guidelines for tunnelling are required to cope with uncertain ground condition and circumstance for technically safe and economic tunnel construction.