• Title/Summary/Keyword: rock tunnel

Search Result 2,168, Processing Time 0.02 seconds

Venturi Effects Induced by the Local Ventilation Fan in Large-Opening Room-and-Pillar Mining Sites (대단면 갱내 국부 선풍기의 벤츄리(Venturi) 효과 연구)

  • Lee, Chang Woo;Nguyen, Van Duc
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.464-472
    • /
    • 2014
  • In large-opening room-and-pillar mining sites, particularly without the devices for the ventilation control, the airflow pattern created by the local fan operation is too complicated to quantify and also shows low ventilation efficiency. This study aims at performing a series of CFD analysis for the so-called venturi effects of the local fans; the effects of increasing airflow rate along the axis downstream of fan resulting from increased kinetic energy and subsequently decreased static pressure in the downstream. Effects of the fan type and installation height are compared. 1 vane-axial fan and 2 propeller fans are analyzed for their venturi effects, while the vane-axial fan was installed at the height of 1.0, 1.5 and 2.0m for comparison. The results can be applied to improve the economy and efficiency of local fans for securing better air quality and work environment management.

Study on High-efficiency Hydraulic Filling Field Experiment for Subsidence Protection (지반침하 방지를 위한 고효율 수압식 충전 현장실험에 관한 연구)

  • Yang, In-Jae;Choi, Nam-Soo;Jeon, Chul-Soo;Lee, Sang-Eun;Shin, Dong-Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.373-385
    • /
    • 2014
  • Hydraulic filling methods are widely applied to suppress the land subsidence recently. But the research on high-efficiency hydraulic filling to protect the land subsidence is rare. In this study, field experiments to improve the efficiency of the hydraulic filling method are performed by changing the property, specification of the filling material and injection pipe. The filling amounts using vertical injection pipe, reducing tee (${\phi}100mm$) pipe, reducing tee (${\phi}80mm$) pipe and reducing tee (${\phi}50mm$) pipe showed 28.84 ton, 42.62 ton, 53.33 ton, and 63.33 ton respectively. The filling rates using reducing tee (${\phi}100mm$) pipe, reducing tee (${\phi}80mm$) pipe and reducing tee (${\phi}50mm$) pipe showed 47.8%, 84.9% and 119.6% respectively. Filling efficiency can be incresed by using reducing tee. This study shows that simply changing the type of injection pipe is expected to increase the hydraulic filling rate.

Research and Development Trends for Mine Subsidence Prevention Technology in Korea (한국의 광산 지반침하방지기술 연구개발 동향)

  • Kim, Soo Lo;Park, Joo Hyun
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.408-416
    • /
    • 2015
  • The collapse of the underground cavities and voids, which were made for developing mineral resources, can cause the subsidence of the ground surface in the residential areas. During the Japanese colonial era and the 1960's mining boom period, lots of mines had been developed indiscriminately in Korea. Due to complicated geological conditions and mining methods, many of dangerous underground mine cavities with steep slopes had been generated at the shallow surface. Due to such conditions, it is difficult to directly apply valid foreign reclamation practice for the cavities in Korea environments. It is necessary to develop the efficient ground stabilization technologies for the Korea underground mine conditions to solve abandoned mine reclamation properly. Therefore, MIRECO and Korea government have been carrying out practical researches and technical developments together with other academic researchers and reclamation business partners, and various practical solutions such as surveying and exploration methods, proper cavity filling materials and reinforcement methods have been developed with application in the mine field. In this article, up to date technologies and R&D trends in the field of mine subsidence prevention technology are broadly reviewed to establish the future direction of a research and development.

Design Parameters for Development of flexible Linear Shaped Charge (가소성 선형 성형폭약 제조를 위한 설계변수에 관한 연구)

  • 박근순;임한욱
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.225-234
    • /
    • 2003
  • The structures to be demolished have become diverse in types from reinforced concrete to steel. The demand for demolition of steel structures is recently increasing in Korea. Most of flexible linear-shaped charges for steel demolition are now imported from foreign countries. To determine the optimum parameters of design far domestic development of flexible linear-shaped charges, some basic experiments have been carried out and their results are summarized as follows; Copper is shown to be superior to aluminium and lead as a liner material. It is also proved that the optimum apex angle of liner is 90$^{\circ}$ in comparision with 45$^{\circ}$, 60$^{\circ}$ and 120$^{\circ}$ Adequate thickness of liners, standoff distance in terms of quantity of explosives are also examined. Explosives and liners are required to be plasticized in order to improve the bond between explosives and various shapes of steel structures.

Reliability Analysis and Utilization of BIM-based Highway Construction Output Volume (BIM기반 고속도로 공사 물량산출 신뢰성 검토 및 활용)

  • Jung, Guk-Young;Woo, Jeong-Won;Kang, Kyeong-Don;Shin, Jae-Choul
    • Journal of KIBIM
    • /
    • v.3 no.3
    • /
    • pp.9-18
    • /
    • 2013
  • In case of applying the BIM method in the civil engineering of irregularly shaped structure, BIM method began to be introduced in the current building engineering area compared with the expected effects of the relatively high construction productivity has been recognized. In this paper, I have developed quantity calculation algorithms applying it to earthwork and bridge construction, tunnel construction, retaining wall construction, culvert construction and implemented BIM based 3D-BIM Modeling quantity calculation. Structure work in which errors occurred in range between -6.28% ~ 5.17%. Especially, understanding of the problem and improvement of the existing 2D-CAD based of quantity calculation through rock type quantity calculation error in range of -14.36% ~ 13.07% of earthwork quantity calculation. It's benefit and applicability of BIM method in civil engineering. In addition, routine method for quantity of earthwork has the same error tolerance negligible for that of structure work. But, rock type's quantity calculated as the error appears significantly to the reliability of 2D-based volume calculation shows that the problem could be. Through the estimating quantity of earthwork based 3D-BIM, proposed method has better reliability than routine method. BIM, as well as the design, construction, maintenance levels of information when you consider the benefits of integration, the introduction of BIM design in civil engineering and the possibility of applying for the effectiveness was confirmed. In addition, as the beginning phase of information integration, quantity document automation program has been developed for activation of BIM. And automatically enter the program code number, linkage and manual volume calculation program, quantity document automation programs, such as the development is now underway, and step-by-step procedures and methods are presented.

A Study of Explosive Jet-cutting Technology by Linear Shape Charges (성형폭약에 의한 폭발절단기술에 관한 연구)

  • 이병일;박근순;공창식;김광태
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.516-525
    • /
    • 2000
  • Recently, the demand for pollution-free demolition work of old reinforced concrete and steel structure has rapidly increased as the redevelopment of urban area has been accelerated. This study deals with linear shape charges for explosive jet cutting on steel structure. We have tested material and shape of steel structure, characteristics of thickness and strength, shape of linear shape charges, type of shape charges, cumulative charges, type of liner, stand-off distance, detonation method. effect of sound and vibration by air blast in explosive jet cutting method. So, We developed linear shape charges in order to take advantage of optimum explosive jet cutting condition. Shape charges were made of PETN explosives. We obtained the experimental formula to decide the amount of explosive needed for thickness of steel structure plate. There are prospects for application of the explosion curving technology under the open space conditions for dismantling the steel structure and steel bridge, scrapped old boats, which are going out of service.

  • PDF

A study on anisotropic characteristics of axial strengths in $\alpha$-quartz by using molecular dynamics simulation and uniaxial compression test (분자동력 학 시뮬레이션과 일축압축강도시험을 이용한 $\alpha$-quartz의 결정축에 따른 강도이방성 검토)

  • ;;市川康明;河村雄行
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.70-79
    • /
    • 2000
  • We carried out NPT-ensemble (constant-number of particles, pressure, and temperature) Molecular Dynamics (MD) simulations for measuring strength anisotropy under uniaxial compressive stress rotated to the crystallographic axes in $\alpha$-quartz. Uniaxial compressive strengths of a single quartz crystal were measured in directions of the a- and c-axis. Measured uniaxial strength of a single quartz crystal was higher in the direction parallel to the c-axis than that measured in the direction normal to the c-axis. However the reverse was found in calculated uniaxial strengths by MD simulation. The contradictive result of strengths was observed in both cases but was found to be different in origin. Strength anisotropy of defectless $\alpha$-quartz crystal in MD simulation is basically caused by structural difference of quartz. By contrast, anisotropy of measured strength in the uniaxial compression test is related to oriented micro-defects developed during crystal growth.

  • PDF

Development of a Windows-based Program for Discrete Event Simulation of Truck-Loader Haulage Systems in an Underground Mine (지하광산 트럭-로더 운반시스템의 이산 사건 시뮬레이션을 위한 Windows용 프로그램 개발)

  • Choi, Yosoon;Park, Sebeom;Lee, Sung-Jae;Baek, Jieun;Jung, Jihoo;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.87-99
    • /
    • 2016
  • We developed a Windows-based program for discrete event simulation of truck-loader haulage systems in an underground mine. The Daesung MDI limestone mine located in Samcheok City, Gangwon Province, Korea was selected as the study area to design the program. The developed program is composed of the graphic user interface (GUI) and simulation engine implemented by Visual Basic.NET 2012 and the GPSS/H simulation language, respectively. When a user sets up input parameters for the discrete event simulation through GUI, the program activates the simulation engine, and then simulation results are displayed on GUI. This paper describes the details of the program development as well as its applications to the study area to determine the optimal number of trucks dispatched at each loading point under different operating conditions.

A Study on Numerical Technique to Enhance In-Situ Applicability and to Overcome Uncertainty in Geo-Material Properties (현장 적용성 향상 및 지반재료 물성의 불확실성 극복을 위한 수치해석법 개발 기초연구)

  • Kim, Hyung-Mok;Synn, Joong-Ho;Inoue, Junya
    • Tunnel and Underground Space
    • /
    • v.17 no.4
    • /
    • pp.285-294
    • /
    • 2007
  • Material properties of geomaterials are usually heterogeneous. And the limitted number of investigation for the subsurface material properties in terms of boreholes are not sufficient enough for identifying the heterogeneity. In most civil engineering work, pre-investigation results can be different from those by in-situ inspection during the construction work. With these points of view, a new analysis concept aiming to evaluate the uncertainty resulted from the heterogeneity of the geomaterial properties as well as to enhance a construction workability and design qualify by a prompt feedback of in-situ conditions was proposed. It was accomplished by linking the Element Free analysis and pre-developed stochastic methods represented by Karhunen-Loeve expansion. Simple ID problem was solved by the developed method, and its validity as well as the characteristic results by different stochastic methods were clarified.

Underwater Explosive Welding of Stainless Steel and Magnesium Alloy (수중 충격파를 이용한 스테인레스 스틸과 마그네슘합금의 폭발용접에 관한 연구)

  • Lee, Joon-Oh;Kim, Young-Kook;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.221-225
    • /
    • 2012
  • Magnesium is one of the light weight materials, which can improve fuel economy and reduce emissions in automotive industry. Recently, magnesium alloys have gained considerable attention due to good mechanical properties. In this work, we have performed an explosive welding using the magnesium alloys (AZ31) and stainless steel (SUS 304). As a result, SUS304/AZ31 were successfully combined each other; however, a resolidified interlayer was observed at the point of welded layer. To reduce the resolidified interlayer, we have changed the thickness (0.5 mm and 1 mm) of stainless steel, distance (45 mm and 60 mm) between explosive and the center of materials and initial angle ($20^{\circ}$ and $30^{\circ}$) of explosive. In the case of the thickness 0.5 mm and angle of $30^{\circ}$, the resolidfied interlayer was not observed due to the increase of distance from the explosive. To accurately estimate the resolidified interlayer, electron probe micro-analyzer (EPMA) method and hardness were used. For the EPMA analysis, mixed materials were confirmed at the resolidified interlayer, and the measurement exhibited the middle value compared with the AZ31 and SUS304.