• Title/Summary/Keyword: rock tunnel

Search Result 2,168, Processing Time 0.028 seconds

Numerical study on the resonance behavior of submerged floating tunnels with elastic joint

  • Park, Joohyun;Kang, Seok-Jun;Hwang, Hyun-Joong;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.207-218
    • /
    • 2022
  • In submerged floating tunnels (SFTs), a next-generation maritime transportation infrastructure, the tunnel module floats in water due to buoyancy. For the effective and economical use of SFTs, connection with the ground is inevitable, but the stability of the shore connection is weak due to stress concentration caused by the displacement difference between the subsea bored tunnel and the SFT. The use of an elastic joint has been proposed as a solution to solve the stability problem, but it changes the dynamic characteristics of the SFT, such as natural frequency and mode shape. In this study, the finite element method (FEM) was used to simulate the elastic joints in shore connections, assuming that the ground is a hard rock without displacement. In addition, a small-scale model test was performed for FEM model validation. A parametric study was conducted on the resonance behavior such as the natural frequency change and velocity, stress, and reaction force distribution change of the SFT system by varying the joint stiffness under loading conditions of various frequencies and directions. The results indicated that the natural frequency of the SFT system increased as the stiffness of the elastic joint increased, and the risk of resonance was the highest in the low-frequency environment. Moreover, stress concentration was observed in both the SFT and the shore connection when resonance occurred in the vertical mode. The results of this study are expected to be utilized in the process of quantitative research such as designing elastic joints to prevent resonance in the future.

Auxiliary Reinforcement Method for the Safety of Tunnelling Face (터널 막장안정성에 따른 보강공법 적용)

  • Kim, Chang-Yong;Park, Chi-Hyun;Bae, Gyu-Jin;Hong, Sung-Wan;Oh, Myung-Ryul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.11-21
    • /
    • 2000
  • Tunnelling has been created as a great extent in view of less land space available because the growth of population in metropolitan has been accelerated at a faster pace than the development of the cities. In tunnelling, it is often faced that measures are obliged to be taken without confirmation for such abnormality as diverged movement of surrounding rock mass, growing crack of shotcrete and yielding of rockbolts. In this case, it is usually said that the judgments of experienced engineers for the selection of measure are importance and allowed us to get over the situations in many construction sites. But decrease of such experienced engineers need us to develop the new system to assist the selection of measures for the abnormality without any experiences of similar tunnelling sites. In this study, After a lot of tunnelling reinforcement methods were surveyed and the detail application were studied, an expert system was developed to predict the safety of tunnel and choose proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database. The expert system developed in this study have two main parts named pre-module and post-module. Pre-module decides tunnel information imput items based on the tunnel face mapping information which can be easily obtained in-situ site. Then, using fuzzy quantification theory II, fuzzy membership function is composed and tunnel safety level is inferred through this membership function. The comparison result between the predicted reinforcement system level and measured ones was very similar. In-situ data were obtained in three tunnel sites including subway tunnel under Han river. This system will be very helpful to make the most of in-situ data and suggest proper applicability of tunnel reinforcement system developing more resonable tunnel support method from dependance of some experienced experts for the absent of guide.

  • PDF

Swelling and Mechanical Property Change of Shale and Sandstone in Supercritical CO2 (초임계 CO2에 의한 셰일 및 사암의 물성변화 및 스웰링에 관한 연구)

  • Choi, Chae-Soon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.266-275
    • /
    • 2012
  • In this study, a method is devised to implement a supercritical $CO_2$ ($scCO_2$) injection environment on a laboratory scale and to investigate the effects of $scCO_2$ on the properties of rock specimens. Specimens of shale and sandstone normally constituting the cap rock and reservoir rock, respectively, were kept in a laboratory reactor chamber with $scCO_2$ for two weeks. From this stage, a chemical reaction between rock surface and the $scCO_2$ was induced. The effect of saline water was also investigated by comparing three conditions ($scCO_2$-rock, $scCO_2-H_2O$-rock and $scCO_2$-brine(1M)-rock). Finally, we checked the changes in the properties before and after the reaction by destructive and nondestructive testing procedures. The swelling of shale was a main concern in this case. The experimental results suggested that $scCO_2$ has a greater effect on the swelling of the shale than pure water and brine. It was also observed that the largest swelling displacement of shale occurred after a reaction with the $H_2O-scCO_2$ solution. The results of a series of the destructive and nondestructive tests indicate that although each of the property changes of the rock differed depending on the reaction conditions, the $H_2O-scCO_2$ solution had the greatest effect. In this study, shale was highly sensitive to the reaction conditions. These results provide fundamental information pertaining to the stability of $CO_2$ storage sites due to physical and chemical reactions between the rocks in these sites and $scCO_2$.

Application of Suggested Equations to determine the Elastic Constants of A Transversely Isotropic Rock from Single Specimen (평면이방성 암석의 단일시험편에서 탄성상수 결정에 제안된 수식들의 적용연구)

  • Park, Chul-Whan;Park, Chan;Jung, Yong-Bok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.153-168
    • /
    • 2010
  • A fifth equation is required to determine the five independent elastic constants of a transversely isotropic rock from compression test of a single specimen. As an approximation proposed by Saint-Venant has been used for long time, it may cause an erroneous result in some cases, especially for specimen with low angle of anisotropy. Three equations were suggested replacing this traditional equation and proved to be applicable by the model analysis in the previous studies. As Saint-Venant's approximation is turned out the same as the first one of them, it has the characteristics that the apparent Young's modulus is monotonously increasing according to the anisotropic angle. The methodology to analyze the elastic constants from four independent strain measurements by uniaxial compressive test of a single standard specimen is concisely described, and the necessity and compatibility of new suggested equations are discussed. Saint-Venant's approximation can determine the elastic constants close to true values and other equations may be unnecessary in specimens with medium to large angle. Nevertheless, they may become applicable because they can produce the almost same amount. For the specimens of small angle of anisotropy, Saint-Venant's approximation may result in out of general ranges or thermodynamic constraints, but other suggested equations can produce the almost true value. Thus they can be applied before other alternative equation is known. The guide map constructed by model study may decide the most compatible one of the three equations.

A Study on the Deformation Behavior of the Segmental Grid Retaining Wall Using Scaled Model Tests (조립식 격자 옹벽의 변형거동에 관한 모형실험 연구)

  • Bae, Woo-Seok;Kwon, Young-Cheul;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.350-359
    • /
    • 2007
  • Most large cut slopes of open pit mines, roadways, and railways are steeply inclined and composed with rocks that do not contain soils. However, these rock slopes suffer both weathering and fragmentation. In the case of steep slopes, falling rock and collapse of a slope may often occur due to surface erosion. Cast-in place concrete and rubble work are the most widely used earth structure-based pressure supports that act as restraints against the collapse of the rock slope. In order to overcome the shortcomings of conventional retaining walls, a segmental grid retaining wall is being used with connects precasted segments to construct the wall. In this study, laboratory model test was conducted to estimate deformation behavior of segmental grid retaining wall with configuration of rear strecher, height and inclination of the wall. In order to examine the behavior characteristics of a segmental grid retaining wall, this research analyzes the aspects of spacial displacement through relative displacement according to change in the inclination of the wall. Also, the walls behavior according to the formation and status of the rear stretcher which serves the role of transferring the load from the header and the stretcher which make up the wall, the displacement of backfill materials in the wall, and the location of the maximum load were surveyed and the characteristics of displacement in the segmental grid retaining wall were observed. The test results of the segmental grid retaining wall showed that there was a sudden increase in failure load according to the decrease in the wall's height and the size of the in was greatly decreased. Furthermore, it revealed that with identical inclination and height, the structure of the rear stitcher did not greatly affect the starting point or size of maximum horizontal displacement, but rather had a stronger effect on the inclination of the wall.

Experimental Study on the Elastic Constants of A Transversely Isotropic Rock by Multi-Specimen Compression Tests Report 2 - Statistical Evaluation and Determination of True Values of Elastic Constants (다중시험편 시험에 의한 평면이방성 암석의 탄성상수 분석연구 제 2 보 - 자료의 통계적 평가와 참값의 결정)

  • Park, Chulwhan;Park, Chan;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.346-353
    • /
    • 2012
  • Multi-specimen uniaxial compression test has been carried out in order to find the method to determine the five independent elastic constants from a single standard specimen of a transversely isotropic rock. Total 35 specimens of 7 different angles from a large block of rhyolite presenting the flow structure obviously are used in tests. This second report is to focus on the statistical evaluation of measured strains and analyzed elastic constants. And the determination of their true or near-true values is discussed. As the result of RSD analysis, it turns out that the reliability of measured strains is sufficiently obtained and Saint-Venant approximation is well applicable except 15 degree angled specimen in tests. RSD is decreasing on the increase of the angle of anisotropy. This tendency may be caused not only by the decreasing of the deviation of measured strains, but also by the better applicability of Saint-Venant approximation on the increase of angle. It can be concluded that the analyzed values are considered the near-true ones of five independent constants on the high reliability. But the variation of the apparent Young's modulus expected by these values is not proved to match the measured tendency. It is inferred that the factor to decrease the apparent Young's modulus and/or to increase the shear strain, is present in the test or in the nature of the anisotropy in consideration of this inconsistency.

A Study on the Structural Behavior of an Underground Radwaste Repository within a Granitic Rock Mass with a Fault Passing through the Cavern Roof (화장암반내 단층지역에 위치한 지하 방사성폐기물 처분장 구조거동연구)

  • 김진웅;강철형;배대석
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.257-269
    • /
    • 2001
  • Numerical simulation is performed to understand the structural behavior of an underground radwaste repository, assumed to be located at the depth of 500 m, in a granitic rock mats, in which a fault intersects the roof of the repository cavern. Two dimensional universal distinct element code, UDEC is used in the analysis. The numerical model includes a granitic rock mass, a canister with PWR spent fuels surrounded by the compacted bentonite inside the deposition hole, and the mixed bentonite backfilled in the rest of the space within the repository cavern. The structural behavior of three different cases, each case with a fault of an angle of $33^{\circ},\;45^{\circ},\;and\;58^{\circ}$ passing through the cavern roof-wall intersection, has been compared. And then fro the case with the $45^{\circ}$ fault, the hydro-mechanical, thermo-mechanical, and thermo-hydro-mechanical interaction behavior have been studied. The effect of the time-dependent decaying heat, from the radioactive materials in PWR spent fuels, on the repository and its surroundings has been studied. The groundwater table is assumed to be located 10m below the ground surface, and a steady state flow algorithm is used.

  • PDF

Groundwater Flow Analysis around Hydraulic Excavation Damaged Zone (수리적 굴착손상영역에서의 지하수유동 특성에 관한 연구)

  • Park, Jong-Sung;Ryu, Dong-Woo;Ryu, Chang-Ha;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.109-118
    • /
    • 2007
  • The excavation damaged zone (EDZ) is an area around an excavation where in situ rock mass properties, stress condition. displacement. groundwater flow conditions have been altered due to the excavation. Various studies have been carried out on EDZ, but most studies have been focused on the mechanical bahavior of EDZ by in situ experiment. Even though the EDZ could potentially form a high permeable pathway of groundwater flow, only a few studies were performed on the analysis of groundwater flow in EDZ. In this study, the' hydraulic EDZ' was defined as the rock Lone adjacent to the excavation where the hydraulic aperture has been changed due to the excavation. And hydraulic EDZ (hydraulic aperture changed zone) estimated by two-dimensional DEM program was considered in three-dimensional DFN model. From this approach the groundwater flow characteristics corresponding to hydraulic aperture change were examined. Together. a parametric study was performed to examine the boundary conditions that frequently used in DFN analysis such as constant head or constant flux condition. According to the numerical analysis, hydraulic aperture change induced by the hydraulic-mechanical interaction becomes one of the most important factors Influencing the hydraulic behavior of jointed rock masses. And also from this study, we suggest the proper boundary condition in three-dimensional DFN model.

Geomechanical Stability of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) using Coupled Thermal-Hydraulic-Mechanical Analysis (열-수리-역학적 연계해석을 이용한 복공식 지하 압축공기에너지 저장공동의 역학적 안정성 평가)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.394-405
    • /
    • 2011
  • In this paper, we applied coupled non-isothermal, multiphase fluid flow and geomechanical numerical modeling using TOUGH-FLAC coupled analysis to study the complex thermodynamic and geomechanical performance of underground lined rock caverns (LRC) for compressed air energy storage (CAES). Mechanical stress in concrete linings as well as pressure and temperature within a storage cavern were examined during initial and long-term operation of the storage cavern for CAES. Our geomechanical analysis showed that effective stresses could decrease due to air penetration pressure, and tangential tensile stress could develop in the linings as a result of the air pressure exerted on the inner surface of the lining, which would result in tensile fracturing. According to the simulation in which the tensile tangential stresses resulted in radial cracks, increment of linings' permeability and air leakage though the linings, tensile fracturing occurred at the top and at the side wall of the cavern, and the permeability could increase to $5.0{\times}10^{-13}m^2$ from initially prescribed $10{\times}10^{-20}m^2$. However, this air leakage was minor (about 0.02% of the daily air injection rate) and did not significantly impact the overall storage pressure that was kept constant thanks to sufficiently air tight surrounding rocks, which supports the validity of the concrete-lined underground caverns for CAES.

Thermal Energy Balance Analysis of a Packed Bed for Rock Cavern Thermal Energy Storage (충전층을 이용한 암반공동 열에너지저장시스템의 열에너지 수지 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.241-259
    • /
    • 2013
  • A packed bed thermal energy storage (TES) consisting of solid storage medium of rock or concrete through which the heat transfer fluid is circulated is considered as an attractive alternative for high temperature sensible heat storage, because of the economical viability and chemical stability of storage medium and the simplicity of operation. This study introduces the technologies of packed bed thermal energy storage, and presents a numerical model to analyze the thermal energy balance and the performance efficiency of the storage system. In this model, one dimensional transient heat transfer problem in the storage tank is solved using finite difference method, and temperature distribution in a storage tank and thermal energy loss from the tank wall can be calculated during the repeated thermal charging and discharging modes. In this study, a high temperature thermal energy storage connected with AA-CAES (advanced adiabatic compressed air energy storage) was modeled and analyzed for the temperature and the energy balance in the storage tank. Rock cavern type TES and above-ground type TES were both simulated and their results were compared in terms of the discharging efficiency and heat loss ratio.