• Title/Summary/Keyword: rock tunnel

Search Result 2,168, Processing Time 0.037 seconds

Manufacturing of an earth pressure balanced shield TBM cutterhead for a subsea discharge tunnel and its field performance analysis (해저 배출관로 건설을 위한 토압식 쉴드TBM 커터헤드의 설계·제작 및 현장 굴진성능의 분석)

  • Bae, Gyu-Jin;Chang, Soo-Ho;Park, Young-Taek;Choi, Soon-Wook;Lee, Gyu-Phil;Kwon, Jun-Yong;Han, Kyoung-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.161-172
    • /
    • 2014
  • An earth pressure balanced shield TBM with the diameter of 4.4 m was designed and manufactured for a subsea discharge tunnel excavation. Its cutterhead was designed to be optimized for the strongest rock mass condition in the tunnel alignment, and then the applicability of the refurbished shield TBM was validated for its maximum capacity. Especially, the maximum cutter penetration depth for the strongest rock mass condition should be kept to be below 7 mm/rev in order to satisfy the allowable capacities of the shield TBM. From the analysis of TBM advance data, approximately 95% of field data showed the cutter penetration depth below 7 mm/rev. In addition, it was certified that the acting forces of every disc cutter, TBM thrust and torque during TBM driving were within the allowable capacities of the shield TBM and its disc cutters. When real acting forces of the disc cutters in the field were compared with those predicted by the CSM model, they showed the close relationships with each other even though the predictions by the CSM model were approximately 22~25% higher than field data.

Application of the SASW Method to the Evaluation of Grouting Performance for a Soft Ground of a Tunnel (터널 원지반의 그라우팅 보강 평가를 위한 SASW 기법의 적용)

  • 조미라;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.273-283
    • /
    • 2003
  • Fissured rock and soft ground always suggest, problems in the construction of the underground space. The stress release of the weak underground material by opening the underground space with a soft ground, fissures and joints can lead to the failure of the opening. Grouting of the weak rock and the soft ground, which is a process of injecting some bonding agents into the soft ground, is one of the measures to reinforce the soft ground and to prohibit the failure of the underground construction due to the stress release. The proper installation of the grouting is essential to ensuring the safety of the tunneling operation, so that the evaluation of the grouting performance is very significant. The general procedure of evaluating the grouting is coring the grouted section and measuring the compression strength of the core. However, sometimes when the grouted section is at the crown of the tunnel and the grouting is installed at a wide section, the coring is not good enough. This study is oriented to propose a new and a non-destructive procedure of evaluating the grouting performance. The proposed method is based on the wave propagation of elastic waves, and evaluates the shear stiffness of the ground and investigates the anomalies such as voids and cracks. The SASW ( Spectral-Analysis-of-Surface-Waves) method is one of the candidate s to make the inspection of the pouting performance, and is adopted in this study. The practical grouting activity was monitored by SASW method, and the proposed method was applied to the inspection of the grouting performance to check the verification of the proposed method.

Analysis of Fire Scenarios and Evaluation of Risks that might Occur in Operation Stage of CAES Storage Cavern (CAES 저장 공동 운영단계에서 발생 가능한 리스크 평가 및 화재 시나리오 분석)

  • Yoon, Yong-Kyun;Ju, Eun-Hye;Seo, Saem-Mul;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2015
  • This study focuses on assessing risks which might occur in operation stage of CAES storage cavern and analyzing fire scenarios for the risk that have been assessed with highest risk level. Risks in operation stage were categorized into upper risk group and lower risk group. Components of upper risk group are technical risk, facility risk and natural disaster risk. Lower risk group is composed of 11 sub-risks. 20 experts were chosen to survey questionnaires. ANP model was applied to analyze the relative importance of 11 sub-risks. Results of risk analysis were compared with risk criterion to set risk priorities, and the highest risk was determined to be 'occurrence of the fire within the management opening'. Three fire scenarios were developed for the highest risk level and FDS (Fire dynamics Simulator) was used to analyze these scenarios. No. 3 scenario which air blows from tunnel into outside atmosphere represented that a rate of smoke spread was the fastest among three fire scenarios and a smoke descended most quickly below the limit line of breathing. Thus, No. 3 scenario turned out to be the most unfavorable condition when operating staffs were evacuated from access tunnel.

Analysis of Advanced Rate and Downtime of a Shield TBM Encountering Mixed Ground and Fault Zone: A Case Study (단층대와 복합지반을 통과하는 쉴드TBM의 굴진율 및 다운타임 발생 특성 분석)

  • Jeong, Hoyoung;Kim, Mincheol;Lee, Minwoo;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.394-406
    • /
    • 2019
  • Difficult ground conditions (e.g., fault zone and mixed grounds) are highly probable to appear in subsea and urban tunnels because of the shallow working depth and alluvial characteristics. TBM usually experienced decrease of penetration rate and increase of downtime when it meets these difficult ground conditions. The problems are usually caused by the adverse geological conditions, and it is preferable to determine the optimal operational parameters of TBM based on the previous operational data obtained while excavating a preceding tunnel. This study carried out for efficient TBM excavation in fault zone and mixed grounds. TBM excavation data from the tunnel site in Singapore and the characteristics of the TBM excavation data was analyzed. The key operational parameters (i.e., thrust, torque, and RPM), penetration rate, and downtime were highly influenced by the presence of fault zones and mixed grounds, and the features was discussed. It is expected that the results and main discussions will be useful information for future tunneling projects in similar geological conditions.

Scale Model Studies for Stability Estimation of Twin Tunnels with Small Clearance (근접병설터널의 안정성 평가를 위한 모형실험 연구)

  • Kim, Pyoung Gi;Kim, Jong Woo
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.130-140
    • /
    • 2013
  • In this study, scaled model tests were performed to investigate the stability of twin tunnels with small clearance, where the pillar widths were 0.5D and 0.25D, respectively. The tunnels were supposed to be constructed in anisotropic weathered rocks with $30^{\circ}$ inclined bedding planes, and the model tests were conducted under the condition of lateral pressure ratio, 1. Six types of test models which had respectively different pillar widths and support conditions were experimented, where crack initiating pressures, maximum pressures, failure modes of pillar and deformation behaviors around tunnels were investigated. The models with wider pillar were cracked under higher pressure than the models with shallower pillar. The models with lining support were cracked under higher pressure and showed less tunnel convergence than the unsupported models. The models with both lining and pillar reinforcement were proved to be most stable among the tested models. In particular, as the model of 0.25D pillar width with only lining support showed shear failure of pillar according to the existing bedding planes, so both lining and pillar reinforcement were thought to be indispensable in that case of tunnel.

Evaluation of Mechanical Performance of a Segment Lining coated by a Sprayed Waterproofing Membrane by a Full-scale Loading Test (실물 재하실험에 의한 뿜칠 방수 멤브레인이 타설된 세그먼트 라이닝의 역학적 성능 평가)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Park, Byungkwan;Kim, Jintae;Choi, Myung-Sik;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.97-110
    • /
    • 2018
  • The application of sprayed waterproofing membrane with high adhesion and ductility is considered to be promising as a measure for repair and reinforcement of a tunnel structure. Therefore, a powder-type and one-component membrane prototype with high tensile and bond strengths was made in this study. Then, its reinforcement effect on a shield segment was evaluated by carrying out a series of full-scale loading tests of segment specimens on which the membrane was sprayed. From the tests, it was confirmed that the initial cracking loads increased by approximately 34% due to cracking retardation by membrane coating. Even though the increase of failure loads were not so high as cracking loads, the strain-softening behaviors were observed from specimens coated by the membrane. Therefore, it is expected that the membrane coated on the inner surface of a lining might be effective in preventing its brittle failure.

In Situ Solute Migration Experiments in Fractured Rock at KURT: Installation of Experimental System and In Situ Solute Migration Experiments (KURT 암반 단열에서 현장 용질이동 실험: 실험 장치 설치 및 현장 용질 이동 실험)

  • Lee, Jae-Kwang;Baik, Min-Hoon;Lee, Tae-Yeop;Park, Kyung-Woo;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.3
    • /
    • pp.229-243
    • /
    • 2013
  • An in situ solute migration system was designed and installed in KAERI Underground Research Tunnel (KURT) constructed in the site of Korea Atomic Energy Research Institute (KAERI) in order to investigate the migration and retardation of non-sorbing and sorbing tracers through a rock fracture. The system is composed of three main parts including injection, extraction, and data treatment. For the selection of a water-conducting fracture, boreholes were drilled. The fractures in the drilled boreholes were investigated using borehole image analysis using borehole image processing system (BIPS). The results of BIPS analysis showed that borehole YH 3-1 and YH 3-2 were connected each other. Moreover, hydraulic tests were carried out to determine the test section with connectivity for the in situ experiments. The in situ solute migration experiments were accomplished to understand the migration of solutes through fractures in KURT using non-sorbing tracers which were fluorescein sodium, eosin-B, bromide and sorbing tracers which were rubidium, nickel, zirconium, and samarium.

A Study on the Basic Geometry Analysis of Abandoned Underground Mine Tunnels in Korea and Advanced Measuring-Analysis Technology for Underground Mine Cavities (한국의 폐광산 지하 채굴갱도 기초형상 분석 및 개선된 광산 지하공동 측정·분석 기술 연구)

  • Kim, Soo-Lo;Park, Sung-Bin;Choi, Byung-Hee;Yun, Jung-Mann;Jeong, Gyo-Cheol
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.455-465
    • /
    • 2016
  • The collapse of underground mine development void for mineral resources can cause the subsidence of ground surface. In order to prevent the subsidence of ground, data such as maps or pictures of past mining site is important information for current mine reclamation works. In particular, mine subsidence management was based on mining maps and pictures. The process of the mining area surveys, safety evaluation, and ground reinforcement are normally possible with information such as maps and pictures in past mining. During the Japanese colonial period and 1960's, a lot of mines were developed in Korea indiscriminately. However, mining information at that time is limited to use. In the future, mining information will become even more rare. MIRECO intends to establish a realistic alternative solution. In this study, the basic numerical information of developed mine tunnels in Korea is statistically reviewed, and advanced underground cavity measuring technology was studied. 4,473 mine tunnel opening data of 1,784 abandoned mines in korea were collected and sorted. As a result of the analysis, the average value of small mine tunnel openings in Korea was 1.982 m in height and 1.959 m in width. The mean value of shape factor was analyzed as 0.485. The summary of these numerical mine data will be helpful for understanding and researching Korean abandoned mines. Therefore, the development of measurement technology for abandoned mine cavities and tunnels is expected to facilitate more effective mine subsidence management works in Korea.

Case study of design and construction for cutter change in EPB TBM tunneling (EPB 쉴드 TBM 커터 교체 설계 및 시공 사례 분석)

  • Lee, Jae-won;Kang, Sung-wook;Jung, Jae-hoon;Kang, Han-byul;Shin, Young Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.553-581
    • /
    • 2022
  • Shortly after tunnel boring machine (TBM) was introduced in the tunneling industry, the use of TBM has surprisingly increased worldwide due to its performance together with the benefit of being safely and environmentally friendly. One of the main cost items in the TBM tunneling in rock and soil is changing damaged or worn cutters. It is because that the cutter change is a time-consuming and costly activity that can significantly reduce the TBM utilization and advance rate and has a major effect on the total time and cost of TBM tunneling projects. Therefore, the importance of accurately evaluating the cutter life can never be overemphasized. However, the prediction of cutter wear in soil, rock including mixed face is very complex and not yet fully clarified, subsequently keeping engineers busy around the world. Various prediction models for cutter wear have been developed and introduced, but these models almost usually produce highly variable results due to inherent uncertainties in the models. In this study, a case study of design and construction of disc cutter change is introduced and analyzed, rather than proposing a prediction model of cutter wear. As the disc cutter is strongly affected by the geological condition, TBM machine characteristic and operation, authors believe it is very hard to suggest a generalized prediction model given the uncertainties and limitations therefore it would be more practical to analyze a real case and provide a detailed discussion of the difference between prediction and result for the cutter change. By doing so, up-to-date idea about planning and execution of cutter change in practice can be promoted.

Database Analysis for Estimating Design Parameters of Medium to Large-Diameter TBM (중대단면 TBM 설계 사양 예측을 위한 DB분석)

  • Choi, Soon-Wook;Park, Byungkwan;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.513-527
    • /
    • 2018
  • The Tunnel Boring Machine(TBM) is relatively insufficient to cope with unpredicted changes in ground conditions as compared with Conventional Tunnelling Methods. Therefore, it is very important to predict the TBM performance at the design stage and estimate the advance rate for the calculation of the construction period. In this study, we added data to 211 TBM databases constructed in the previous study and analyzed the correlation between TBM outer diameter, maximum thrust, maximum cutterhead torque, cutterhead driving power and RPM, which are the main design and manufacturing specifications of TBM. As a result of the analysis from results obtained in the previous studies, it was confirmed that TBM outer diameter is very effective and important in estimating maximum thrust, maximum cutterhead torque, and cutterhead driving power of the TBM. As a result of comparing the regression equations derived from other TBM databases outside the country and the regression equation obtained from the present study results, the maximum thrust showed a similar tendency to each other, but the maximum torque estimated from the regression equation of this study was higher than that of other countries in the case of the large scale TBM.