• Title/Summary/Keyword: rock tunnel

Search Result 2,168, Processing Time 0.029 seconds

A Study on the Quantification of Assessment Category of Roughness of Discontinuity of Rock Mass Classification Using Delphi method (델파이방법을 이용한 암반분류법의 불연속면 거칠기 평가분류 정량화에 관한 연구)

  • Kim, Byung-Ryeol;Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.210-219
    • /
    • 2015
  • This paper describes a new quantitative process for evaluating the roughness of discontinuity, which is suggested as a qualitative criteria in RMR or Q-system. For this purpose, the Delphi method which is one of the surveying methods was introduced. The selected panels were asked to evaluate the roughness of discontinuities on the Web which was hosted by authors in advance. A total of 3 surveys were performed using JRCs suggested by Barton and Choubey as well as Ai generated by the Monte Carlo simulations. After each survey, the results were provided to all panels for comparing their decisions to others. As surveys proceeded, better consensus and convergence were achieved. With a good agreement of panels on roughness classification, the quantitative criteria for roughness of discontinuity in RMR and Q-system was established in this study.

Analysis of Hydro-Fracturing Test Results Using a Mechanical Crack Model (파괴역학모델은 이용한 수압파쇄시험 결과의 해석에 관한 연구)

  • 최용근;배성호;박배한;이정인;전석원
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.237-247
    • /
    • 2001
  • In this study, the fracture mechanics model as well as the elastic model was reviewed theoretically and four field case studies were conducted to investigate the feasibility of fracture mechanics model for hydraulic fracturing test. There was a difference between the result by fracture mechanics model and the one by elastic model. And the smaller initial crack length is, the larger the difference is. It is considered that the fracture mechanics model can be applied to the specific case of which the crack length is known. In this study, the rock tensile strength is measured using fracture mechanics model, brazilian test and elastic model. The measured tensile strength by the fracture mechanics model is the largest and the elastic model is the smallest. This result is due to the size effect of the each test. And the tensile strength from the elastic model for hydraulic fracturing test can be used to estimate the in-situ rock tensile strength.

  • PDF

Numerical Simulation of Gas Flow within a Radial Fracture Created by Single-Hole Blasting (단일공 발파에서 생성된 균열망에 작용하는 가스압의 수치해석적 산정)

  • Jeng, Yong-Hun;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.413-421
    • /
    • 2006
  • In order to explain entirely dynamic fracture process induced by blasting in rock mass, it needs to consider detonation pressure and gas pressure acting on blasthole wall simultaneously. In this study, prior to simulating the coupling between gas flow and rock mass, we analyzed effects of gas pressure-time history, length of cracks and equation of state adopted to calculate the gas pressure on the gas flow within a radial fracture created by single-hole blasting. The effects were investigated on two assumptions: (a) the radial fracture was composed of 5 cracks which were 0.01 m in length and 0.001 m in asperity each and (b) the PETN explosive which diameter was 36 mm was charged in a blasthole of 45 mm diameter. It was concluded that the maximum gas pressure and its travel time were dependent on characteristics of charged explosives and geometrical properties of radial fracture.

Analysis of oscillatory responses of slug tests in a crystalline rock aquifer (암반대수층 내 순간충격시험 시 관찰된 요동반응의 해석)

  • Ryu, I.;Ji, S.H.;Koh, Y.
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.348-354
    • /
    • 2009
  • Slug test is a common characterization method that estimates aquifer hydraulic conductivity rapidly and economically. To characterize the hydraulic property near the borehole YS-4 in the Korea Atomic Energy Research Institute (KAERI) site, slug tests were performed, and oscillatory hydraulic responses were observed. We analyzed the observations with the modified Hvorslev and Bouwer&Rice methods considering the casing inertia, and then the results were compared with those from the general Hvorslev and Bouwer&Rice methods. The estimated hydraulic conductivities from the modified methods are ranged from $4.85{\times}10^{-6}$ to $5.44{\times}10^{-6}$ m/sec, but those from the general ones are ranged from $3.10{\times}10^{-6}$ to $3.63{\times}10^{-5}$ m/s, which shows that the oscillatory responses should be analyzed with consideration of the flowing water inertia effect.

Approximate Solution for Constant Velocity of Archimedean Spiral for Abrasion Testing of Rock Cutting Tools (암석공구 마모시험을 위한 아르키메데스 나선의 등속도 운동 근사해 조사)

  • Kang, Hoon;Kim, Dae-ji;Song, Changheon;Oh, Joo-Young;Cho, Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.181-192
    • /
    • 2020
  • Pin-on-disk test is a suggested abrasion testing method by ASTM (American Society for Testing and Materials). This briefly illustrated the Archimedean spiral motion of a pin type specimen on a disk. To apply this method to rock cutting tools, a constant linear velocity (CLV) is precisely maintained during the test. We defined the two velocity vectors (RPM and horizontal speed) which connected to the resultatnt velocity. We derived a differential equations for the two parameters under CLV condition. It was difficult to find a exact solution. Previous literatures had been reviewed, and an approximate solution was investigated. We mathematically simulated the result for a certain parameter, and examine the accuracy of the solution.

Calculation Method of Constant Linear Velocity Spiral Path for Pin-on-disk Abrasion Test using a Hollow Type Rock Sample (중공형 암석시편의 Pin-on-disk 마모시험을 위한 등속도 나선경로 계산방법)

  • Kang, Hoon;Kim, Dae-ji;Song, Changheon;Oh, Joo-Young;Cho, Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.394-403
    • /
    • 2020
  • This technical note describes the calculation method of continuous constant linear velocity Archimedean spiral paths which are applied to the pin-on-disk abrasion test. Approximate constant linear velocity Archimedean spirals have unstable velocities in the very near region of the rotational origin. Thus, in this technical note, the offset distance from the rotational origin was given by using a hollow type rock sample to maintain the constant velocity during the test. Also, to connect the inward and outward spirals continuously, the information of start and end points were input on the next spiral path consecutively. Furthermore, the calculation program was developed to provide convenience for calculating constant linear velocity spirals according to the specimen dimension and abrasion test conditions.

Influencing factors for abrasive flow rate and abrasive flow quality of abrasive injection waterjet systems for tunnel excavation (터널굴착용 투입형 연마재 워터젯 시스템의 연마재 투입량과 유동성에 미치는 영향 인자)

  • Joo, Gun-Wook;Oh, Tae-Min;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.417-430
    • /
    • 2014
  • A new rock excavation method using an abrasive waterjet system is under development for efficiently creating tunnels and underground spaces in urban areas. In addition, an appropriate abrasive flow rate and abrasive flow quality are important for the new rock excavation (cutting) method using an abrasive waterjet system. This study evaluated the factors influencing the abrasive flow rate and abrasive flow quality, specifically the abrasive pipe height, length, tortuosity and inner diameter, through experimental tests. Based on the experimental test results, this study suggested optimal conditions for the abrasive flow rate and abrasive flow quality. The experimental results can be effectively utilized as baseline data for rock excavation methods using an abrasive waterjet system in various construction locations such as tunnels near urban surroundings, utility tunnels, and shafts.

Effect of Joint Persistence on the Formation of Tetrahedral Block Inside an Underground Opening (절리 영속성이 사각 단면 지하공동에서의 사면체 블록 형성에 끼치는 영향)

  • Cho, Taechin
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.475-483
    • /
    • 2016
  • A numerical analysis model capable of predicting the shape, the size and the potentiality of collapse of tetrahedral blocks considering the persistence obtained from the field survey of joint distribution around the underground excavation surface has been developed. Numerical functions of analyzing both the exposed trace distribution on the excavation surface and the formation of tetrahedral block controlled by the extent of joint surface have been established and linked to the previously developed three dimensional deterministic block analysis model. To illustrate the reliability of advanced numerical model the case of underground excavation in which the collapse of rock block had practically taken place was studied. Representative orientations of joint sets was determined based on the joint distribution pattern observed on the excavation surfaces. The formation of block on the roof of underground opening was analyzed to unveil the potential tetrahedral block the shape of which was very similar to the collapsed rock block. Mechanisms of collapse process has been also analyzed by considering the three dimensional shape of tetrahedral block.

Analysis of Acoustic Emission Signals during Long-Term Strength Tests of Brittle Materials (취성재료의 장기 강도시험 중 미소파괴음 신호 분석)

  • Cheon, Dae-Sung;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.121-131
    • /
    • 2017
  • We studied the time-dependent behaviors of rock and concrete materials by conducting the static and dynamic long-term strength tests. In particular, acoustic emission(AE) signals generated while the tests were analyzed and used for the long-term stability evaluation. In the static subcritical crack growth test, the long-term behavior and AE characteristics of Mode I and Mode II were investigated. In the dynamic long-term strength test, the fatigue limit and characteristics of generation of AE were analyzed through cyclic four points bending test. The graph of the cumulative AE hits versus time showed a shape similar to that of the creep curve with the first, second and third stages. The possibility for evaluating the static and dynamic long-term stability of rock and concrete is presented from the log - log relationship between the slope of the secondary stage of cumulative AE hits curve and the delayed failure time.

Slope Stability Assessment and Factor Analysis of Surface Mines due to Blasting (발파로 인한 노천광산 사면안정성 평가 및 인자분석)

  • Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.98-107
    • /
    • 2020
  • In surface mining, it is very important to create a mining area for economical mining. This study examined the contribution of design factors on slope stability with different slope design and blasting conditions. The design factors were the properties of the rock, the slope angle and the bench height, and the blasting conditions were reflected at different explosive weight and distances. The safety factor of slope was calculated by shear strength reduction method through 3D modeling, and the contribution rate of rock slope was 94.8%, which is relatively higher than other design factors, slope angle 0.89%, bench height 0.58%, and blasting It is shown that it affects about 3.73%, and it can be seen that blasting at a close distance can affect the stability of the slope.