• Title/Summary/Keyword: rock tensile strength

Search Result 184, Processing Time 0.02 seconds

Study on the Geotechnical Characteristics of Granite in Korea and their Correlation with Rock Classification Method (국내 화강암의 지반공학적 특성 및 암반분류법과의 상관성에 관한 연구)

  • SunWoo, Choon;Ryu, Dong-Woo;Kim, Hyung-Mok;Kim, Ki-Seog
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.205-215
    • /
    • 2011
  • In this study, we analyzed physical properties of granites and their correlation with rock mass classification methods. The granite samples were obtained from field survey, in-situ borehole tests and laboratory tests for a design phase of various roads, railways and other civil engineering works in Korea. Among the measured physical properties, the results of unit weight, compressive strength, tensile strength, seismic velocity, cohesion, friction angle, elastic modulus and deformation modulus were introduced. We also correlated these properties with the compressive strength. The results of different rock classification method of RQD, RMR, and Q-system against the granites in Korea were compared with each other, and the correlation equations were proposed in a more simplified form. We also derived RMR values using the compressive strength as well as the RQD values of in-situ drilled cores, and estimated the deformation modulus of in-situ rock mass in terms of the RMR values.

Predicting rock brittleness indices from simple laboratory test results using some machine learning methods

  • Davood Fereidooni;Zohre Karimi
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.697-726
    • /
    • 2023
  • Brittleness as an important property of rock plays a crucial role both in the failure process of intact rock and rock mass response to excavation in engineering geological and geotechnical projects. Generally, rock brittleness indices are calculated from the mechanical properties of rocks such as uniaxial compressive strength, tensile strength and modulus of elasticity. These properties are generally determined from complicated, expensive and time-consuming tests in laboratory. For this reason, in the present research, an attempt has been made to predict the rock brittleness indices from simple, inexpensive, and quick laboratory test results namely dry unit weight, porosity, slake-durability index, P-wave velocity, Schmidt rebound hardness, and point load strength index using multiple linear regression, exponential regression, support vector machine (SVM) with various kernels, generating fuzzy inference system, and regression tree ensemble (RTE) with boosting framework. So, this could be considered as an innovation for the present research. For this purpose, the number of 39 rock samples including five igneous, twenty-six sedimentary, and eight metamorphic were collected from different regions of Iran. Mineralogical, physical and mechanical properties as well as five well known rock brittleness indices (i.e., B1, B2, B3, B4, and B5) were measured for the selected rock samples before application of the above-mentioned machine learning techniques. The performance of the developed models was evaluated based on several statistical metrics such as mean square error, relative absolute error, root relative absolute error, determination coefficients, variance account for, mean absolute percentage error and standard deviation of the error. The comparison of the obtained results revealed that among the studied methods, SVM is the most suitable one for predicting B1, B2 and B5, while RTE predicts B3 and B4 better than other methods.

Influence of Microcrack on Brazilian Tensile Strength of Jurassic Granite in Hapcheon (미세균열이 합천지역 쥬라기 화강암의 압열인장강도에 미치는 영향)

  • Park, Deok-Won;Kim, Kyeong-Su
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.41-56
    • /
    • 2021
  • The characteristics of the six rock cleavages(R1~H2) in Jurassic Hapcheon granite were analyzed using the distribution of ① microcrack lengths(N=230), ② microcrack spacings(N=150) and ③ Brazilian tensile strengths(N=30). The 18 cumulative graphs for these three factors measured in the directions parallel to the six rock cleavages were mutually contrasted. The main results of the analysis are summarized as follows. First, the frequency ratio(%) of Brazilian tensile strength values(kg/㎠) divided into nine class intervals increases in the order of 60~70(3.3) < 140~150(6.7) < 100~110·110~120(10.0) < 90~100(13.3) < 80~90(16.7) < 120~130·130~140(20.0). The distribution curve of strength according to the frequency of each class interval shows a bimodal distribution. Second, the graphs for the length, spacing and tensile strength were arranged in the order of H2 < H1 < G2 < G1 < R2 < R1. Exponent difference(λS-λL, Δλ) between the two graphs for the spacing and length increases in the order of H2(-1.59) < H1(-0.02) < G2(0.25) < G1(0.63) < R2(1.59) < R1(1.96)(2 < 1). From the related chart, the six graphs for the tensile strength move gradually to the left direction with the increase of the above exponent difference. The negative slope(a) of the graphs for the tensile strength, suggesting a degree of uniformity of the texture, increases in the order of H((H1+H2)/2, 0.116) < G((G1+G2)/2, 0.125) < R((R1+R2)/2, 0.191). Third, the order of arrangement between the two graphs for the two directions that make up each rock cleavage(R1·R2(R), G1·G2(G), H1·H2(H)) were compared. The order of arrangement of the two graphs for the length and spacing is reverse order with each other. The two graphs for the spacing and tensile strength is mutually consistent in the order of arrangement. The exponent differences(ΔλL and ΔλS) for the length and spacing increase in the order of rift(R, -0.08) < grain(G, 0.14) < hardway(H, 0.75) and hardway(H, 0.16) < grain(G, 0.23) < rift(R, 0.45), respectively. Fourth, the general chart for the six graphs showing the distribution characteristics of the microcrack lengths, microcrack spacings and Brazilian tensile strengths were made. According to the range of length, the six graphs show orders of G2 < H2 < H1 < R2 < G1 < R1(< 7 mm) and G2 < H1 < H2 < R2 < G1 < R1(≦2.38 mm). The six graphs for the spacing intersect each other by forming a bottleneck near the point corresponding to the cumulative frequency of 12 and the spacing of 0.53 mm. Fifth, the six values of each parameter representing the six rock cleavages were arranged in the order of increasing and decreasing. Among the 8 parameters related to the length, the total length(Lt) and the graph(≦2.38 mm) are mutually congruent in order of arrangement. Among the 7 parameters related to the spacing, the frequency of spacing(N), the mean spacing(Sm) and the graph (≦5 mm) are mutually consistent in order of arrangement. In terms of order of arrangement, the values of the above three parameters for the spacing are consistent with the maximum tensile strengths belonging to group E. As shown in Table 8, the order of arrangement of these parameter values is useful for prior recognition of the six rock cleavages and the three quarrying planes.

Direct and indirect methods for determination of mode I fracture toughness using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • In this paper, mode I fracture toughness of rock was determined by direct and indirect methods using Particle Flow Code simulation. Direct methods are compaction tension (CT) test and hollow centre cracked quadratic sample (HCCQS). Indirect methods are notched Brazilian disk (NBD) specimen, the semi-circular bend (SCB) specimen, hollow centre cracked disc (HCCD), the single edge-notched round bar in bending (SENRBB) specimen and edge notched disk (END). It was determined that which one of indirect fracture toughness values is close to direct one. For this purpose, initially calibration of PFC was undertaken with respect to data obtained from Brazilian laboratory tests to ensure the conformity of the simulated numerical models response. Furthermore, the simulated models in five introduced indirect tests were cross checked with the results from direct tests. By using numerical testing, the failure process was visually observed. Discrete element simulations demonstrated that the macro fractures in models are caused by microscopic tensile breakages on large numbers of bonded discs. Mode I fracture toughness of rock in direct test was less than other tests results. Fracture toughness resulted from semi-circular bend specimen test was close to direct test results. Therefore semi-circular bend specimen can be a proper test for determination of Mode I fracture toughness of rock in absence of direct test.

Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone

  • Maruvanchery, Varun;Kim, Eunhye
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.57-67
    • /
    • 2019
  • Water-induced strength reduction is one of the most critical causes for rock deformation and failure. Understanding the effects of water on the strength, toughness and deformability of rocks are of a great importance in rock fracture mechanics and design of structures in rock. However, only a few studies have been conducted to understand the effects of water on fracture properties such as fracture toughness, crack propagation velocity, consumed energy, and microstructural damage. Thus, in this study, we focused on the understanding of how microscale damages induced by water saturation affect mesoscale mechanical and fracture properties compared with oven dried specimens along three notch orientations-divider, arrester, and short transverse. The mechanical properties of calcite-cemented sandstone were examined using standard uniaxial compressive strength (UCS) and Brazilian tensile strength (BTS) tests. In addition, fracture properties such as fracture toughness, consumed energy and crack propagation velocity were examined with cracked chevron notched Brazilian disk (CCNBD) tests. Digital Image Correlation (DIC), a non-contact optical measurement technique, was used for both strain and crack propagation velocity measurements along the bedding plane orientations. Finally, environmental scanning electron microscope (ESEM) was employed to investigate the microstructural damages produced in calcite-cemented sandstone specimens before and after CCNBD tests. As results, both mechanical and fracture properties reduced significantly when specimens were saturated. The effects of water on fracture properties (fracture toughness and consumed energy) were predominant in divider specimens when compared with arrester and short transverse specimens. Whereas crack propagation velocity was faster in short transverse and slower in arrester, and intermediate in divider specimens. Based on ESEM data, water in the calcite-cemented sandstone induced microstructural damages (microcracks and voids) and increased the strength disparity between cement/matrix and rock forming mineral grains, which in turn reduced the crack propagation resistance of the rock, leading to lower both consumed energy and fracture toughness ($K_{IC}$).

A Study on the Mechanicla Behavior of Two Granites at Elevated Temperatures (고온하 화강암의 변형 및 파괴거동에 관한 연구)

  • 장명환;양형식
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.130-135
    • /
    • 1997
  • When crystalline rocks are heated, thermal stress is induced by the differences in thermal expansion of the mineral composition and its orientation. In this study, high temperature uniaxial compressive tests were carried out for Iksan and Hwangdeung granites to study the deformation and failure behavior due to thermal loading. Compressive and tensile strength of Hwangdeung granite for 20$0^{\circ}C$ decreased to 80% and 82% of the room temperature strength, and those of Iksan granite decreased to 90% and 92% for 20$0^{\circ}C$, respectively. Elastic moduli of both granites were decreased sharply at the stress level of 80% of ultimate failure strength. Elastic moduli of both granites by variation of temperature at 50% of ultimate failure strength was decreased as almost linearly.

  • PDF

Study on the Direct Tensile Test for Cemented Soils Using a Built-In Cylinder (내장형 실린더를 이용한 시멘트 고결토의 인장시험 방법에 관한 연구)

  • Park, Sung-Sik;Lee, Jun-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1505-1516
    • /
    • 2014
  • In this study, a cylinder embedded within cemented soils was used to cause directly tensile failure of cemented soils. An existing dumbbell type direct tensile test and a split tensile test that is most general indirect tensile test were also carried out to verify the developed built-in cylinder tensile test. Testing specimens with two different sand/cement ratios (1:1 and 3:1) and two curing periods (7 and 28 days) were prepared and tested. Total 10 specimens were prepared for each case and their average value was evaluated. Unconfined compression tests were also carried out and the ratio of compressive strength and tensile strength was evaluated. The tensile strength determined by built-in cylinder tensile test was slightly higher than that by dumbbell type direct tensile test. The dumbbell type test has often failed in joint part of specimen and showed some difficulty to prepare a specimen. Among three tensile testing methods, the standard deviation of tensile strength by split tensile test was highest. It was shown that the split tensile test is applicable to concrete or rock with elastic failure but not for cemented soils having lower strength.

Determination of Rock Abrasiveness using Cerchar Abrasiveness Test (세르샤 마모시험을 통한 암석의 마모도 측정에 관한 연구)

  • Lee, Su-Deuk;Jung, Ho-Young;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.284-295
    • /
    • 2012
  • Abrasiveness of rock plays an important role on the wear of rock cutting tools. In this study, Cerchar abrasiveness tests were carried out to assess the abrasiveness of 19 different Korean rocks. Cerchar abrasiveness test is widely used to assess the abrasiveness of rock because of its simplicity and inexpensive cost. This study examines the relationship between Cerchar Abrasiveness Index (CAI) and mechanical properties (uniaxial compressive strength, Brazilian tensile strength, Young's modulus, Poisson's ratio, porosity, shore hardness of rock), and the effect of quartz content, equivalent quartz content, which was obtained from XRD analysis. As a result of test, CAI was more influenced by petrographical properties than by the bonding strength of the matrix material of rock. CAI prediction model which consisted of UCS and EQC was proposed. CAI decreased linearly with the hardness of the steel pin. Numerical analysis was performed using Autodyn-3D for simulating the Cerchar abrasiveness test. In the simulations, most of pin wear occurred during the initial scratching distance, and CAI increased with the increase of normal loading.

Cementing failure of the casing-cement-rock interfaces during hydraulic fracturing

  • Zhu, Hai Y.;Deng, Jin G.;Zhao, Jun;Zhao, Hu;Liu, Hai L.;Wang, Teng
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.91-107
    • /
    • 2014
  • Using the principle of damage mechanics, zero-thickness pore pressure cohesive elements (PPCE) are used to simulate the casing-cement interface (CCI) and cement-rock interface (CRI). The traction-separation law describes the emergence and propagation of the PPCE. Mohr-coulomb criteria determines the elastic and plastic condition of cement sheath and rock. The finite element model (FEM) of delamination fractures emergence and propagation along the casing-cement-rock (CCR) interfaces during hydraulic fracturing is established, and the emergence and propagation of fractures along the wellbore axial and circumferential direction are simulated. Regadless of the perforation angle (the angle between the perforation and the max. horizontal principle stress), mirco-annulus will be produced alonge the wellbore circumferential direction when the cementation strength of the CCI and the CRI is less than the rock tensile strength; the delamination fractures are hard to propagate along the horizontal wellbore axial direction; emergence and propagation of delamination fractures are most likely produced on the shallow formation when the in-situ stresses are lower; the failure mode of cement sheath in the deep well is mainly interfaces seperation and body damange caused by cement expansion and contraction, or pressure testing and well shut-in operations.

Effects of Artificial Vibrations on Strength and Physical Properties of Curing Concrete (인공진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향)

  • 임한욱;정동호;이상은
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.31-37
    • /
    • 1994
  • The effects of blasting and ground vibratons on curing concrete have not been well studied. As a results unrealistic and costly ground vibration constraints have been placed on blasting and piling when it occurs in the vicinity of curing concrete. To study the effects of ground vibrations, a shaking table was made to produce peak particle velocities in the nearly same frequency range as found in construction blasting. Concrete blocks of 33.3X27.7X16.2cm were molded and placed on the shaking table. Different sets of concrete blocks were subjected to peak vibrations of 0.25, 0.5, 1.0, 5.0 and 10cm/sec. The impulses were applied at two hour intervals for thirty seconds. Along with unvibrated concrete blocks, the vibrated concrete samples with 60.3mm in diameters were measured for elastic moduli, sonic velocity, tensile and uniaxial compressive strength. Test results showed that the vibrations in curing concrete generally have effects on the uniaxial compressive strength or physical properties of the concrete.

  • PDF