• Title/Summary/Keyword: rock sample

Search Result 242, Processing Time 0.024 seconds

Application of geophysical and geochemical methods to investigation of AMD environment (AMD 환경평가를 위한 지구물리${\cdot}$지구화학탐사의 적용사례)

  • Kim Jisoo;Han Soohyung;Choi Sanghoon;Lee Pyeongkoo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.267-272
    • /
    • 2005
  • Geophysical surveys were performed in three abandoned mines: Jangpoong, Kwangyang, Imchon. The main objectives of the researches include delineating the pathways of leachate from acid mine drainage(AMD), mapping buried rock wastes and tailings, detecting drainage pipes, and investigating the gallery and membrane, if they exist, Geophysical responses were well correlated with the results from water sample data(i.e., pH, EC, heavy metal contents, $SO_4^{-2}$). Main pathways of the leachate were successfully detected in electrical resistivity sections and self-potential(SP) profiles, whereas waste rocks, drainage pipes, and membranes were effectively located by incorporating seismic refraction, electrical resistivity and GPR methods.

  • PDF

대전광역시 지하수의 수리화학 특성 및 오염에 대한 토지이용 형태 및 도시화의 영향

  • 정찬호;김은지
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.35-37
    • /
    • 2001
  • This study has investigated the chemical characteristics and the contamination of groundwater in relation to land use in Daejeon Metropolitan City. An attempt was made to distinguish anthrophogenic inputs from the influence of natural chemical weathering on the chemical composition of groundwater at Taejon. Groundwater samples collected at 170 locations in the Taejon area show very variable chemical composition of groundwater, e.9. electrical conductance ranges from 65 to 1,290 S/cm. Most groundwater is weakly acidic and the groundwater chemistry is more influenced by land use and urbanization than by aquifer rock type. Most of groundwater from green areas and new town residential districts has low electrical conductance, and is of Ca-HC $O_3$ type, whereas the chemical composition of groundwater from the old downtown and industrial district is shifted towards a Ca-Cl (N $O_3$+S $O_4$) type with high electrical conductance. A number of groundwater samples in the urbanized area are contaminated by high nitrate and chlorine, and exhibit high hardness. The Ep$CO_2$, that is the $CO_2$ content of a water sample relative to pure water, was computed to obtain more insight into the origin of $CO_2$ and bicarbonate in the groundwater. Factor analysis of the chemical data shows that the HC $O_3$ and N $O_3$ concentrations have the highest factor loadings on factor 1 and factor 2, respectively. Factors 1 and 2 represent major contributions from natural processes and human activities, respectively. The results of the factor analysis indicate that the levels of $Ca^{2+}$, $Mg^{2+}$, N $a^{+}$, Cl and SO4$^2$ derive from both pollution sources and natural weathering reactions.ons.

  • PDF

Suppression of Pyrite Oxidation by Formation of Iron Hydroxide and Fe(III)-silicate Complex under Highly Oxidizing Condition

  • Lee, Jin-Soo;Chon, Chul-Min;Kim, Jae-Gon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.297-302
    • /
    • 2011
  • Acid drainage generated by pyrite oxidation has caused the acidification of soil and surface water, the heavy metal contamination and the corrosion of structures in abandoned mine and construction sites. The applicability of Na-acetate (Na-OAc) buffer and/or Na-silicate solution was tested for suppressing pyrite oxidation by reacting pyrite containing rock and treating solution and by analyzing solution chemistry after the reaction. A finely ground Mesozoic andesite containing 10.99% of pyrite and four types of reacting solutions were used in the applicability test: 1) $H_2O_2$, 2) $H_2O_2$ and Na-silicate, 3) $H_2O_2$ and 0.01M Na-OAc buffer at pH 6.0, and 4) $H_2O_2$, Na-silicate and 0.01M Na-OAc buffer at pH 6.0. The pH in the solution after the reaction with the andesite sample and the solutions was decreased with increasing the initial $H_2O_2$ concentration but the concentrations of Fe and $SO_4^{2-}$ were increased 10 - 20 times. However, the pH of the solution after the reaction increased and the concentrations of Fe and $SO_4^{2-}$ decreased in the presence of Na-acetate buffer and with increasing Na-silicate concentration at the same $H_2O_2$ concentration. The solution chemistry indicates that Na-OAc buffer and Na-silicate suppress the oxidation of pyrite due to the formation of Fe-hydroxide and Fe-silicate complex and their coating on the pyrite surface. The effect of Na-OAc buffer and Na-silicate on reduction of pyrite oxidation was also confirmed with the surface examination of pyrite using scanning electron microscopy (SEM). The result of this study implies that the treatment of pyrite containing material with the Na-OAc buffer and Na-silicate solution reduces the generation of acid drainage.

Uranium in Drinking Water of Kyungpook Area in Korea (경북지역의 먹는 물에서 우라늄 검출 특성)

  • Lee, Hea-Geun;Cha, Sang-Deok;Kim, JeongJin;Kim, Young-Hun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.235-242
    • /
    • 2014
  • Uranium can be released into the water environment from natural sources and human activities. The natural source of uranium is dominant in the Korean soil and groundwater environments. Uranium has both of radioactive and chemical toxic properties. Therefore, a drinking water contaminated with uranium has a high health risk. This study was conducted to determine the uranium concentration of water systems including small village drinking water system, groundwater for drinking water purpose, spring water, groundwater monitoring well, and emergency water suppling system. The uranium concentration was compared with domestic and other countries' standard. The contamination level was also evaluated on the basis of geological characteristics of the area. Among total 803 samples, 6 exceeded the Korean standard, $30{\mu}g/{\ell}$ and this was about 0.7% of the total sample. On the basis of geology, uranium concentration appeared to be increased in order of biotite granodiorite > biotite granite > gneissoid granite. The highest level of uranium was 12.4 in average.

Hydrogeochemistry of groundwaters in Boeun Area, Korea

  • Park, Seong-Sook;Yun, Seong-Taek;Kim, Kyoung-Ho;Kweon, Jang-Soon;Sung, Ig-Hwan;Lee, Byeong-Dae
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.519-519
    • /
    • 2003
  • We performed a hydrochemical study on a total of 89 bedrock groundwaters collected from preexisting wells (30 to 300 m deep) in the Boeun area. Hydrochemical data showed significant variations in the area, due to varying degrees of anthropogenic pollution. The waters were mostly enriched in Ca and HCO$_3$ but locally contained significant concentrations of anthropogenic constituents in the general order of Cl >NO$_3$>SO$_4$. In particular, about 11% of the examined wells exceeded the drinking water standard with respect to nitrate. We consider that aquifers in the area are locally highly susceptible to the contamination related to agricultural activities. Diagrams showing the relationships between the summation of cations (∑cations) and the concentration of several anions with different origin (natural versus anthropogenic) were used to estimate the relative role of anthropogenic contamination. A good correlation was observed for the relationship between ∑cations and bicarbonate, indicating that water-rock interaction (namely, hydrolysis of silicate minerals) is most important to control the water quality. Thus, we made an assumption that the equivalent of dissolved cations for a water should be equal to the alkalinity, if the chemistry were controlled solely by a set of natural weathering reactions. If we excluded the equivalent quantities of cations and bicarbonate (natural origin) from the acquired data for each sample, the remainder therefore could be considered to reflect the degree of anthropogenic contamination. Finally, we performed a multiple regression approach for hydrochemical data using the ∑cations as a dependent variable and the concentration data of each anion (natural or anthropogenic) as an independent variable. Using this approach, we could estimate the relative roles of anthropogenic and natural processes. Rather than the conventional evaluation scheme based on water quality criteria, this approach will be more useful and reasonable for the evaluation of groundwater quality in a specific region and also can be used for planning appropriate protection and remedial actions.

  • PDF

Gold-Silver Mineral Potential Mapping and Verification Using GIS and Artificial Neural Network (GIS와 인공신경망을 이용한 금-은 광물 부존적지 선정 및 검증)

  • Oh, Hyun-Joo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.3
    • /
    • pp.1-13
    • /
    • 2010
  • The aim of this study is to analyze gold-silver mineral potential in the Taebaeksan mineralized district, Korea using a Geographic Information System(GIS) and an artificial neural network(ANN) model. A spatial database considering Au and Ag deposit, geology, fault structure and geochemical data of As, Cu, Mo, Ni, Pb and Zn was constructed for the study area using the GIS. The 46 Au and Ag mineral deposits were randomly divided into a training set to analyze mineral potential using ANN and a test set to verify mineral potential map. In the ANN model, training sets for areas with mineral deposits and without them were selected randomly from the lower 10% areas of the mineral potential index derived from existing mineral deposits using likelihood ratio. To support the reliability of the Au-Ag mineral potential map, some of rock samples were selected in the upper 5% areas of the mineral potential index without known deposits and analyzed for Au, Ag, As, Cu, Pb and Zn. As the result, No. 4 of sample exhibited more enrichments of all elements than the others.

Construction of forest environmental information and evaluation of forest environment (산림환경 정보구축 및 산림환경 평가)

  • Chang, Kwan-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.37-51
    • /
    • 1998
  • This study was carried out to lead the scientific management of the urban forest by estimating the forest environment. Forest environmental information was constructed using IDRISI system based on survey data, soil, plant, and digital elevation data. Forest environmental information was consisted of soil depth, soil organic content, soil hardness and parent rock as a soil environmental factor, and forest community, tree age, crown density as a plant environmental factor. Plant activity and topographic environment also were analyzed by using remote sensing data and digital elevation data. Environmental function of urban forest was estimated based on results of soil conservation and forest productivity. 70% of urban forest is located in elevation of lower than 200m and 55% of forest area have the slope of lower than 15 degree. Analyzed soil conservation status and forest productivity were almost the same as the soil chemical properties of collected soil sample and the vegetation index estimated using remote sensing data, respectively. Thus, the constructed forest environmental information could be useful to give some ideas for management of urban forest ecosystem and establishment of environmental conservation planning, including forests, in Taejon. The best forest environmental function was appeared at the natural ecology preservation zone. Current natural parks and urban parks were appeared to establish the environmental conservation plan for further development. The worst forest environmental function was appeared at the forest near to the industrial area and an overall and systematic plan was required for the soil management and high forest productivity because these forest was developing a severe soil acidification and having a low forest productivity.

  • PDF

A unhomogeneity of critical current at the long length coated conductors (Coated conductor에서 임계전류의 불균일)

  • Lee, Nam-Jin;Oh, Sang-Soo;Kim, Ho-Sup;Ha, Dong-Woo;Ha, Hong-Soo;Ko, Rock-Kil;Kim, Tae-Hyung;Moon, Seung-Hyun;Youm, Do-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.1-2
    • /
    • 2009
  • The high critical current ($I_c$, A) of SmBCO coated conductor in a magnetic field, the high production rate and the high material yield are promising for applications. The inhomogeneity of Ie at the long length coated conduct is very important problem for electric application. So we researched the reason of inhomogeneity of $I_c$ at long length tape prepared by batch type co-evaporation system called by EDDC. The long length SmBCO coated conductors were developed on $LaMnO_3/IBAD-MgO/Y_2O_3/Al_2O_3$/Hastelloy C276 template. The distribution of $I_c$ are from 0 to 397 A/cm at 77 K and self field. We have studied the microstructures of these films by using SEM, EDS and X-ray diffraction. The XRD and composition by EDS results of SmBCO film reveals subtle difference. But, the microscopic observation by SEM show the microcrack at the sample with low $I_c$.

  • PDF

Development of Triaxial Cells Operable with In Situ X-ray CT for Hydro-Mechanical Laboratory Testing of Rocks (원위치 X-ray CT 촬영이 가능한 암석의 수리-역학 실험용 삼축셀 개발)

  • Zhuang, Li;Yeom, Sun;Shin, Hyu-Soung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.9
    • /
    • pp.45-55
    • /
    • 2020
  • X-ray computed tomography (CT) is very useful for the quantitative evaluation of internal structures, particularly defects in rock samples, such as pores and fractures. In situ CT allows 3D imaging of a sample subjected to various external treatments such as loading and therefore enables observation of changes that occur during the loading process. We reviewed state-of-the-art of in situ CT applications for geomaterials. Two triaxial cells made using relatively low density but high strength materials were developed aimed at in situ CT scanning during hydro-mechanical laboratory testing of rocks. Preliminary results for in situ CT imaging of granite and sandstone samples with diameters ranging from 25 mm to 50 mm show a resolution range of 34~105 ㎛ per pixel pitch, indicating the feasibility of in situ CT observations for internal structural changes in rocks at the micrometer scale. Potassium iodide solution was found to improve the image contrast, and can be used as an injection fluid for hydro-mechanical testing combined with in situ CT scanning.

장풍 폐광산의 산성광산폐수에 의한 침출수 유동에 대한 지구물리 및 지화학탐사자료의 상관해석

  • Kim, Ji-Su;Han, Su-Hyeong;Choe, Sang-Hun;Lee, Gyeong-Ju;Lee, In-Gyeong;Lee, Pyeong-Gu
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.1
    • /
    • pp.19-27
    • /
    • 2002
  • Geophysical surveys(self-potential, electromagnetic, electrical resistivity, and seismic refraction methods) were performed to delineate the flow channel of leachate from a AMD (acid mine drainage) by correlating the anomalies to geochemical characteristics at an abandoned mine (Jangpoong mine). The geophysical responses attempted to be correlated with water sample analysis data(pH, EC, heavy metals, ${SO_4}^{-2}$). Electrical dipole-dipole resistivity sections represent the low-resistivity zone trending northwest, which indicates the leachate flow by AMD along the contact of the mine waste rock dump and the bedrock. From the overall points of geophysical and geochemical anomalies, it is summarized that the flow channel of leachate by AMD can be successfully imaged with composite interpretations on the geophysical and geochemical studies.

  • PDF