• Title/Summary/Keyword: rock sample

Search Result 242, Processing Time 0.03 seconds

High sensitivity determination of iridium contents in ultra-basic rocks by INAA with coincidence gamma-ray detection

  • Ebihara, Mitsuru;Shirai, Naoki;Kuwayama, Jin;Toh, Yosuke
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.423-428
    • /
    • 2022
  • Very low contents (in the range of 10-9 g/g) of Ir in mantle-derived rock samples (komatiites) were non-destructively determined by INAA coupled with coincidence gamma-ray spectrometry using 16 Ge detectors. Aliquots of the same samples were analyzed by NiS fire-assay ICP-MS for Ir and other platinum group elements. Because the INAA procedure used in this study is non-destructive and is almost free from spectral interference in gamma-ray spectrometry, the INAA values of Ir contents obtained in this study can be highly reliable. Iridium values obtained by ICP-MS were consistent with the INAA values, implying that the ICP-MS values of Ir obtained in this study are equally reliable. Under the present experimental conditions, detection limits were estimated to be 1 pg/g, which corresponds to 0.1 pg for a sample mass of 0.1 g. These levels can be even lowered by an order of magnitude, if necessary, which cannot be achieved by ICP-MS carried out in this study.

Effect of Shock Wave Exposure on Structural, Optical and Magnetic Properties of Lead Sulfide Nanoparticles (충격파 유동노출에 따른 황화납 나노소재의 미세구조 및 자기광학적 특성 분석에 관한 실험적 연구)

  • Kiwon Kim;Surendhar Sakthivel;J. Sahadevan;P. Sivaprakash;Ikhyun Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.18-27
    • /
    • 2024
  • A series of shock wave pulses with Mach number 2.2 of 100, 200, and 300 shocks were applied to lead sulfide (PbS) nanomaterials at intervals of 5 sec per shock pulse. To investigate the crystallographic, electronic, and magnetic phase stabilities, powder X-ray diffractometry (XRD), diffused reflectance spectroscopy (DRS), and vibrating-sample magnetometry (VSM) were employed. The material exhibited a rock salt structure (NaCl-type structure); XRD results indicated that material is monoclinic with space group C121 (5). Further, XRD results showed shifts due to lattice contraction and expansion when material was subjected to shock wave pulses, indicating stable material structure. Based on the data obtained, we believe that the PbS material is a good choice for high-pressure, high-temperature, and aerospace applications due to its superior shock resistance characteristics.

Pyrite Content using Quantitative X-Ray Diffraction Analysis and Its Application to Prediction of Acid Rock Drainage (정량 X-선회절분석을 이용한 황철석 함량 결정과 산성 암반 배수 발생 평가에의 응용)

  • Chon, Chul-Min;Kim, Jae-Gon;Lee, Gyoo-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.2 s.48
    • /
    • pp.71-80
    • /
    • 2006
  • We examined the mineralogical composition of pyrite-bearing rocks by quantitative powder X-ray diffraction analysis using the matrix-flushing method and ROCKJOCK (a full pattern fitting computer program). The neutralization potential (NP) and acid generating potential (AP) were calculated on the basis of mineralogical compositions. The mineralogical AP was compared with the conventional AP calculated from bulk sulfur concentration to assess the applicability to the prediction of acid rock drainage(ARD). The pyrite content calculated by matrix-flushing method showed a high positive correlation($r^2$=0.95) with those by ROCKJOCK. The pyrite contents by matrix-flushing method was 1.45 times larger than those by ROCKJOCK. The pyrite content and mineralogical AP obtained by the matrix-flushing method had a better correlation($r^2$=0.98) with those by the total sulfur concentrations in the all samples except KB sample. The mineralogical NPs of YJ sample were 23.0 and 34.0(kg $CaCO_3$ equivalent per tonne) by matrix-flushing method and ROCKJOCK, respectively. The AP calculated by matrix-flushing method and ROCKJOCK program were 47% and 72% of those by the conventional ABA test. We hereby suggested that the quantitative analysis using XRD data can be applied to prediction of ARD. For more reliable calculation of the mineralogical NP and AP, other sulfide and carbonate minerals such as pyrrhotite, dolomite, ankerite, siderite, rhodochrosite which can affact the mineralogical NP and AP should be considered.

Monitoring and detecting $CO_2$ injected into water-saturated sandstone with joint seismic and resistivity measurements (탄성파 및 비저항 동시측정에 의한 수포화 암석시료에 주입된 $CO_2$ 모니터링 및 탐지)

  • Kim, Jong-Wook;Matsuoka, Toshifumi;Xue, Ziqiu
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.58-68
    • /
    • 2011
  • As part of basic studies of monitoring carbon dioxide ($CO_2$) storage using electrical and seismic surveys, laboratory experiments have been conducted to measure resistivity and P-wave velocity changes due to the injection of $CO_2$ into water-saturated sandstone. The rock sample used is a cylinder of Berea sandstone. $CO_2$ was injected under supercritical conditions (10 MPa, $40^{\circ}C$). The experimental results show that resistivity increases monotonously throughout the injection period, while P-wave velocity and amplitude decrease drastically due to the supercritical $CO_2$ injection. A reconstructed P-wave velocity tomogram clearly images $CO_2$ migration in the sandstone sample. Both resistivity and seismic velocity are useful for monitoring $CO_2$ behaviour. P-wave velocity, however, is less sensitive than resistivity when the $CO_2$ saturation is greater than ~20%. The result indicates that the saturation estimation from resistivity can effectively complement the difficulty of $CO_2$ saturation estimations from seismic velocity variations. By combining resistivity and seismic velocity we were able to estimate $CO_2$ saturation distribution and the injected $CO_2$ behaviour in our sample.

Possibility about Application and Interpretation of Surface Nondestructive X-ray Diffraction Method for Cultural Heritage Samples by Material (유형별 문화재 시료의 비파괴 표면 X-선 회절분석법 적용과 해석 가능성)

  • Moon, Dong Hyeok;Lee, Myeong Seong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.287-301
    • /
    • 2019
  • Preservation of the original form is the principle for conservation, management and utilization of cultural heritages. Thus, non-destructive analysis of these samples are important field of the conservation science. In this study, examined the applicability of nondestructive surface X-ray diffraction analysis (ND-XRD) for cultural heritage by materials (rock specimen, jade stone, pigment painted specimen, earthen artifact, metal artifact). In result, all type of sample is recorded suitable X-ray diffraction patterns for identifying mineral composition in case of surface condition with adequate particle size and arrangement. And diffraction pattern is reflected surface information than matrix. Therefore, ND-XRD is thought to be applicable not only mineral identification but also interpretation of manufacturing technique and alteration trend about layered sample (in horizontally or vertically). Whereas some exceptional diffraction patterns were recorded due to overlapping information on specific crystal planes. It caused by skip the sample treatment (powdering and randomly orientation). It could be advantageously used for mineral identification, such as preferred orientation of clay minerals. In contrast, irregular diffraction pattern caused by single crystalline effect is required careful evaluation.

Experimental Application of Consolidants Using Artificially Weathered Stones(II): Focusing on Accelerated Weathering Test (인공풍화암을 이용한 강화제의 적용실험 연구(II): 촉진풍화실험을 통한 강화처리 암석의 내구성 평가)

  • Lee, Jae Man;Lee, Myeong Seong;Park, Sung Mi;Lee, Mi Hye;Kim, Jae Hwan
    • Journal of Conservation Science
    • /
    • v.29 no.3
    • /
    • pp.249-259
    • /
    • 2013
  • This study was experimented on accelerated weathering test using salt and freeze-thaw to prove effects of consolidants and consolidation for stone cultural heritage. The samples used four kinds of stones (Gyeongju Namsan Granite, Iksan Granite, Yeongyang Sandstone and Jeongseon Marble) which to distributed by three type of weathering grade (Fresh, Weathered Stone and Highly Weathered Stone) added for thermal treatment. The samples were treated with three consolidants (Wacker OH 100, Remmers KSE 300 and 1T1G), and tested by 500 cycles with freezing-thawing and 50 cycles of salt weathering test. As a results of freezing-thawing test, the crack and destruction occurred from some samples. And total immersed samples maintained effect of consolidation to 200 cycles. Also, The rock particle was fall off and gradually destructed by salts weathering test. The consolidated sample relatively had fewer changes by the weathering than not treated sample. The sprayed sample had not continuous effect on weathering.

Repeatability and Reproducibility in Effective Porosity Measurements of Rock Samples (암석시험편 유효공극률 측정의 반복성과 재현성)

  • Lee, Tae Jong;Lee, Sang Kyu
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.209-218
    • /
    • 2012
  • Repeatability and reproducibility in solid weight and effective porosity measurements have been discussed using 8 core samples with different diameters, lengths, rock types, and effective porosities. Further, the effect of temperature on the effective porosity measurement has been discussed as well. Effective porosity of each sample has been measured 7 times with vacuum saturation method with vacuum pressure of 1 torr and vacuum time of 80 minutes. Firstly, effective porosity of each sample is measured one by one, so that it can provide a reference value. Then for reproducibility check, effective porosity measurements with vacuum saturation of 2, 4, and 8 samples simultaneously have been performed. And finally, repeated measurements for 3 times for each sample are made for repeatability check. Average deviation from the reference set in solid weight showed 0.00 $g/cm^3$, which means perfect repeatability and reproducibility. For effective porosity, average deviations are less than 0.07% and 0.05% in repeatability and reproducibility test sets, respectively, which are in good agreement too. Most of porosities measured in reproducibility test lies within the deviation range in repeatability test sets. Thus, simultaneous vacuum saturation of several samples has little impact on the effective porosity measurement when high vacuum pressure of 1 torr is used. Air temperature can cause errors on submerged weight read and even effective porosity, because it is closely related to the temperature, density, and buoyancy of water. Consequently, for accurate measurement of effective porosity in a laboratory, efforts for maintaining air or water temperature constant during the experiment, or a temperature correction from other information are needed.

A Scientific Study of Roof Tiles in Joseon Dynasty from Dongdaemoon Stadium (동대문운동장유적 출토 조선시대 기와의 특성 연구)

  • Chung, Kwang-Yong
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.3
    • /
    • pp.160-173
    • /
    • 2012
  • Roofing tile research conducted in Korea so far is mostly related to studies on roofing tile patterns excavation report on the roof tile klin site in the aspects of archeology architecture and history of art. There have been continuous studies on kiln ground and manufacture techniques of roofing tiles. However it is difficult to find roofing tiles research based on scientific experiments. The research on this paper performs physical and chemical experimental study to understand order, manufacturing techniques and other characteristics of Chosun Dynasty roofing tiles excavated in Dongdaemun stadium. As for physical experimental study water absorption, specific gravity, whole-rock Magnetic susceptibility rate and Differential Thermal Analysis are conducted. As for chemical experimental study, neutron activation analysis(NAA), microstructure observation, X-ray diffractometry(XRD) analysis are conducted. Result of neutron activation analysis and statistical analysis on piece of roof tile 22 samples clearly show that the roofing tile samples are from different time line and places. It also shows different composition when compare average value of rare earth resources per findspots. It means roofing tiles were manufactured from clay mineral from several places. Close inspection using XRD and polarization microscope reveals that main components of roofing tiles are quartz and felspar. Mica and Illite are found partially. XRD analysis shows mullite mineral composition which occurs when roofing tile is calcined around $1000^{\circ}C$. Differential thermal analysis shows gradual exothermic peak near $900^{\circ}C$. Based on these results, it is assumed that roofing tile is made at $900{\sim}1000^{\circ}C$. result of XRD analysis shows mullite were made near $1000^{\circ}C$. in Differential Thermal Analysis shows gradual exothermic peak near $900^{\circ}C$. this results shows that roof tiles were made near 900~1000 near $1000^{\circ}C$ mean value of whole-rock Magnetic susceptibility rate. When performed comparative analysis using whole-rock Magnetic susceptibility rate average value, findspots provided no certain classification to arrange. Nonetheless low whole-rock Magnetic susceptibility rate 0.2~0.78(${\times}103$ SI unit) is found when roofing tile patterns are Pasangmun, Taesangmun, Eosangmun, Kyukjamun, Heongsunmun. Overall absorptivity is 14~21%. It is similar to 14~18% of roofing tile from Chosun Dynasty. There is only 1.4~2.5g/cm3 of roof tile sample specific gravity. The analysis finds no difference in specific gravity by findspots.

A Study on the Reinforcement Case of Bridge Foundation in the Limestone Cavity with CGS Method (CGS 공법 적용 석회암 공동지역의 교량기초보강 사례 연구)

  • Park, Sungsu;Hong, Jongouk;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.43-52
    • /
    • 2013
  • Limestone typically forms large caverns such as reticular caverns or limestone caves, and also forms sinkhole and doline. These caverns cause different settlement when constructing roads, dams, etc. because the foundation cannot sustain the upper structures. So it is necessary to reinforce foundation such as cavern filling method, etc. In this study, ground reinforcement for structure foundation was carried out using CGS method in limestone cavity area and evaluation of reinforcement effect from engineering viewpoint was conducted through the field test. Among others, boring test was carried out to identify the ground structure and engineering characteristics. After CGS reinforcement, boring test was conducted for supplementary verification, and with reinforcement core taken during boring test, rock test was carried out to identify the physical properties of reinforcement material. After applying CGS method, rock test of the typical specimen, among reinforcement cores, taken from boring test was carried out and physical properties of the reinforcement was identified. As a result of compressive test of core sample, material inside the cavity was filled properly, indicating compressive strength of 12.2~19.2(MPa) which was evaluated acceptable. Thus the limestone cavity proved to have been reinforced successfully.

Hydrothermal Alteration Around the TA 26 Seamounts of the Tofua Volcanic Arc in Lau Basin, Tonga (통가국 라우분지 TA 26 해저산의 열수변질작용)

  • Cho, Hyen Goo;Kim, Young-Ho;Um, In Kwon;Choi, Hunsoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.233-247
    • /
    • 2012
  • We have researched the distribution and characteristics of seafloor hydrothermal deposits for the development of economic mineral deposits in the Lau Basin, Tonga since 2009. In this study, we interpreted hydrothermal alteration around TA 26 seamounts of the Tofua volcanic arc using X-ray diffraction analysis for bulk sample and preferred-oriented specimen of clay fraction. We used 2 core samples and several surface samples. Plagioclase and quartz are dominant mineral in the basement rock, whereas kaolin mineral and smectite are superior in marine surface sediments. Especially sulfate and sulfide minerals such as gypsum, barite, sphalerite, and pyrite are predominant in the vent sediments. When we compare the mineral composition between basement rock and sea surface sediments, argillic alteration zone composed of kaolin mineral and smectite could be produced by hydrothermal fluids. Based on the downcore variation of mineral assemblages, most portion of MC08H-06 core could be interpreted as argillic alteration zone composed of kaolin mineral and smectite except top 2 cm area. Various sulfate or sulfide minerals and argillic alteration zone suggest a high probability of massive sulfide deposits in the seafloor of the TA 26 seamount.