• Title/Summary/Keyword: rock physical property

Search Result 60, Processing Time 0.025 seconds

Soil Physical and Hydraulic Properties over Terrace Adjacent Four Major Rivers

  • Lee, Kyo Suk;Lee, Jae Bong;Lee, Myoung Yun;Joo, Ri Na;Lee, Dong Sung;Chung, Doug Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.3
    • /
    • pp.235-241
    • /
    • 2016
  • The soil does not only serve as a medium for plant growth but also for engineering construction purposes. It is very weak in tension, very strong in compression and fails only by shearing. The behaviour of the soil under any form of loading and the interactions of the earth materials during and after any engineering construction work has a major influence on the success, economy and the safety of the work. Soils and their management have therefore become a broad social concern. A limitless variety of soil materials are encountered in both agronomy and engineering problems, varying from hard, dense, large pieces of rock through gravel, sand, silt and clay to organic deposits of soft compressible peat. All these materials may occur over a range of physical properties, such as water contents, texture, bulk density and strength of soils. Therefore, to deal properly with soils and soil materials in any case requires knowledge and understanding of these physical properties. The desired value of bulk density varies with the degree of stability required in construction. Bulk density is also used as an indicator of problems of root penetration,soil aeration and also water infiltration. This property is also used in foundation engineering problems. While not conforming to standard test procedures, this work attempts to add to the basic information on such important soil parameters as water content, bulk density.

Case Study on the Application of Chain Saw Machine for the Underground Marble Quarrying (갱내 대리석 채석을 위한 체인쏘머신 적용 사례연구)

  • Ju, Jaeyeol;Lee, Kwangpyo;Kim, Jaedong
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.180-191
    • /
    • 2013
  • The purpose of this research was to find an optimal quarrying for marble by analyzing the applicability and the work efficiency of a chain saw machine newly introduced in the underground Baekwoon mine. From the test results of the physical properties of Baekwoon marble, which affects the efficiency of rock cutting, it was found to have similar physical characteristics as the ones which are now being produced in the other areas in Korea. And especially it shows isotropic property, which can be thought to be advantageous as a dimensional stone. To check the long-term quality of the marble as a stone material, several tests such as corrosion resistance test and abrasion test were carried out. It was found to be vulnerable to acid rain with decrease of weight and seismic wave velocity after applying artificial rain at pH 5.6 for 50 times. The percentage of wear from abrasion test was 22.67%. The working time and cutting speed of the chain saw machine were recorded and analyzed during the test-run at the quarry. The overall work cycle was assorted into 9 unit operations and the operating time per each unit was drawn. The operating times for the two cutting patterns, which could be possibly applicable to the work site, were compared. The results indicated that the pattern B, that the cutting sequence was set to minimize the movement of the machine, showed 6% less working hours than the pattern A, which first cuts the outer boundary. With cutting pattern analysis, the ore body in the Baekwoon mine was 3 dimensionally modeled and a quarrying plan considering the existing conditions of the marble was suggested.

Geostatistical inversion of geophysical data for estimation of rock quality (물리탐사 자료의 지구통계학적 역산에 의한 암반강도 추정)

  • Oh, Seok-Hoon;Suh, Baek-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.63-67
    • /
    • 2008
  • Geostatistical inverse approach using geophysical data was applied to indirectly make the RMR classification at points apart from boreholes. The geostatistical appoach was usually used to find optimized estimation which supports two or more different physical properties at unsampled points. However, in this study, an approach to solve inverse problem was proposed. The primary variable, RMR values obtained at known boreholes, is geostatistically simulated with many realization at pre-defined grid point according to the variogram model. The simulated values are sequentially compared with the physical property resulted from geophysical survey at an arbitrary grid point, and the most similar one is chosen. This process means that the spatial distribution of primary variable, RMR, is conformed well to the original pattern of the borehole observation, and ensure to fit the geophysical survey result to reflect the correlation between different physical properties.

  • PDF

Analysis of Slope Stability and Property of Discontinuities Using Square-Inventory Method: The Changri area, Boeun-Gun, Chungbuk (정면적법을 이용한 불연속면의 특성화 및 사면안정해석: 충북 보은군 내북면 창리 지역)

  • Choi, Byoung-Ryol;Cheong, Sang-Won
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.20-32
    • /
    • 2008
  • The study shows a method called a square-inventory method, which is a better and faster method than scanline survey and window method for an analysis of slope stability. The study area is located in the Changri area, Boeun-Gun, Chungbuk, and consists of many formations of the Okcheon Supergroup. Various types of failure are observed from the phyllite including the rocks in the study area. The physical properties of meta-sedimentary rocks are that minerals of the rocks are composed of microcrystalline quartz and sericite, which are arranged parallel to bedding (or schistosity) and crenulation cleavage. Therefore, such properties affect geotechnical ones of the rock. The slope stability are analyzed by selecting 3 areas, each of which are divided into 2 or 3 slopes of $1m{\times}1m$ area that represent each of 3 investigation sites. The possibility of wedge and toppling failure is very high in all 3 areas by using square-inventory method. Although possibility of plane failure is weak in the investigation site 2, the plane failures are frequently found from the slope of site 2. The bedding (or schistosity) plane and cleavage, another types of discontinuity coexist in meta-sedimentary rocks uulike igneous rocks, and therefore are important factors to be considered together with joint structures in th ε analysis of slope stability.

Growth Characteristics of Strawberry Runner Plants according to Mixing Ratio of Reused Rockwool, Decomposed Granite, and Horticultural Media (재사용 암면, 마사토 및 원예용 상토의 혼합비율에 따른 딸기 자묘의 생육 특성)

  • Jeong, Ji-Hee;Bae, Hyo Jun;Ko, Baul;Ku, Yang Gyu;Kim, Ho Cheol;Bae, Jong Hyang
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.497-503
    • /
    • 2022
  • This study was conducted to investigate the horticultural media + decomposed granite + reused rock wool in the following mixing ratio: Control = 100:0, M1 = 80:0:20, M2 = 60:30:10, M3 = 40:30:30, M4 = 30:40:30, M5 = 0:50:50 (reused rockwool : decomposed granite : horticultural media) and develop the physicochemical properties and the growth of 'Sulhyang' strawberry runner plant. In the physical aspect of the horticultural media, statistical differences were recognized that the bulk density and particle density were lower in the control and M1. But the bulk density and particle density were high in the M3, M4, and M5, because it had high mixing ratio between recycled rock wool and decomposed granite. EAW and WBC showed a similar tendency. The air porosity and total porosity were higher in control and M1 than M3, M4, M5. Exchangeable cation (K+, Ca2+, Na+, Mg2+) and base replacement capacity (CEC) were higher in control and M1, than M2, M3, M4, and M5. As a result of the cultivation of 'Sulhyang' runner plant, the plant length was long in M2, 32.1 cm and smaller than M5 to 28.4 cm. However, if the crown diameter, which is the growth indicator of the runner plant, all 6 treatments were formed 11.23 mm-12.03 mm, which is considered to be suitable for the growth of the runner plant. There wasn't a statistical difference between the weight and dry weight of the root. As a result, the growth difference of the seedlings by the horticulture media was similar. Therefore, considering the physical properties of the horticultural media, it was judged that the air porosity and total porosity would be improved when the recycled rock wool and the decomposed granite were properly mixed rather than the use of the horticultural media as a single medium, which would be advantageous for irrigation management.

Industry-University-Research Collaborative Geoscientific Study in Pocheon area for Groundwater Survey, Part I: Borehole Technology (포천지역 지하수기초조사 산학연 공동탐사 사례연구(I): 공내탐사기술)

  • Yu, Young-Chul;Lee, Sang-Tae;You, Young-Jun;Hwang, Se-Ho;Sin, Je-Hyun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.117-122
    • /
    • 2005
  • The purpose of this study is to analyze a correlation between lithology, rock physical property and fracture zone by multiple-logging method, which includes optic borehole image, suspension type PS, resistivity, SP, natural gamma, density, caliper logging located in Ogar test area, Changsu, Pocheon-gun, Gyunggi Province. The outstanding geophysical logging responses particularly shown from lithology pattern, fracture zone, dike zone. in result, the depth of fracture zone which enable groundwater flow estimated at $67{\sim}69m$.

  • PDF

Physical Properties Related to Metamorphic Grade of the Hornfels Exposed Around Mt. Palgong (팔공산 주변 혼펠스의 변성도에 따른 물리적 특성)

  • Shin, Kuk-Jin;Oh, Je-Heon;Jung, Yong-Wook;Kim, Gyo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.25-35
    • /
    • 2014
  • The sedimentary rocks exposed around Mt. Palgong were subjected to metamorphism due to a granitic magma intrusion at late Cretaceous, and they eventually metamorphosed to hornfels by the action of both hydrothermal solution and high temperature supplied from the magma. The hornfels zone around the granite body ranges from 2.0 to 3.5 km in width but the boundary between hornfels and sedimentary rocks is not obviously defined because the metamorphic grade gradually decreases with distance from the granite boundary. A series of laboratory tests on 350 core specimens made by 35 fresh rock blocks obtained from 5 selected locations around Mt. Palgong are performed to verify the variation of physical and mechanical properties related to metamorphic grade of the rock. Water content and absorption ratio of the hornfels linearly increase with distance to the granite boundary whereas dry unit weight, p-wave velocity, point load strength, and slake durability index linearly decrease with the distance. These results imply that the metamorphic grade of the hornfels also linearly decrease with the distance to granite boundary. Empirical equations for the variation of properties with the distance to granite boundary and relationship between a property and another one are deduced by regression analyses. And a criteria for classification of hornfels exposed in the study area based on the P-wave velocity and point load strength is proposed.

Quality of Building Stones by Physical Properties (물성에 의한 석재의 품질도)

  • 박덕원
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • Building stones are used mainly as a material for making decoration and sculpture, and consequently they must have predominant physical properties extensively. Among various physical properties, the coefficient of pore dominates the usefulness of building stones, so the plans were made for establishing the quality classification of building stones with respect to the nature of pore. For this study, bore-hole core samples according to the depth of the biotite granites and the granitic gneiss were applicated. From the related chart between porosity and absorption ratio, Mungyeong granitic gneiss($Gn_1$) shows the widest phase of distribution in the range of measurement values, and the values decrease in the order of Pocheon granite($Gr_2$) and Mungyeong granite($Gr_1$) in the range. The strength of each rock mass varies with the degree of alteration. Also in correlation between compressive strength and tensile strength, the range of measurement values decrease in the order of $Gn_1$, $Gr_2$and $Gr_1$. Porosity is adopted as a representative physical property for establishing the quality classification of building stones, and then relative evaluation was made with regard to various physical properties. From the related chart between porosity(n)-specific gravity(G), absorption ratio(Ab), compressive strength(${\sigma}_{c}$), tensile strength(${\sigma}_{t}$), shore hardness(Hs) and Young's modulus($E_{t}$), standard of each grade is established.

Physical Properties of Shale Aggregate and Characteristics of Concrete in Replacement Ratio in Daegu-Kyeongbuk Region (대경권 셰일 골재의 물성 평가 및 치환율 변화에 따른 콘크리트의 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Yeo, In-Dong;Choi, Jong-Oh;Bae, Su-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5551-5557
    • /
    • 2012
  • Sedimentary rocks dug up in construction fields are mostly stockpiled for landfill disposal, leading to an increase in construction costs and construction inefficiency. After screening, some of the sandstone can be used as aggregate; however, most of the shale ends up as industrial waste in practice. In this study, to stabilize the demand and develop resources for alternative aggregates of concrete, the potential use of shale, which is widely distributed in the Daegu-Kyeongbuk region, as a concrete aggregate was evaluated. Red and black shale exported from a Daegu excavation site was selected for use in the experiments and evaluated by comparing with hornfels, which is widely used as a coarse aggregate and is a type of andesite and metamorphosed sedimentary rock. The physical properties of the aggregate were evaluated in accordance with the test methods of KS F 2527 "crushed concrete aggregate," and the compressive strength against the shale aggregate replacement ratio was measured. The compressive strength of the concrete after 28 days was 30.8 MPa when the black shale replaced 100% of the aggregate in the concrete and 31.1 MPa when the red shale replaced 100% of the aggregate in the concrete. Compared with the compressive strength of 37.5 MPa for concrete prepared by using plain aggregate, using shale as a substitute for the aggregate produced an average compressive strength that was 82% of normal concrete.

Study on the Material and Deterioration Characteristics of the Stone Seated Buddha Triad and Stone Standing Buddha in Bijung-ri, Cheongju, Korea (청주 비중리 석조여래삼존상 및 석조여래입상의 재질특성과 손상특성 연구)

  • Yoo, Ji Hyun;Choie, Myoungju;Lee, Myeong Seong;Kim, Yuri
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.778-790
    • /
    • 2021
  • The Stone Seated Buddha Triad and Stone Standing Buddha in Bijung-ri are state-designated heritage (treasure) statues having the Buddha style of the Goryeo dynasty from the 6th century. Conservation scientific investigations were conducted to understand the preservation status of these stone Buddha statues and to establish a conservation plan. The Stone Seated Buddha Triad and Stone Standing Buddha are composed of fine-medium grained biotite granite, which is considered to be of the same origin owing to their low magnetic susceptibility distribution of less than 0.2 (×10-3 SI unit) and similar mineral characteristics. The Stone Seated Buddha Triad has highly homogenous mineral composition and particle size, whole-rock magnetic susceptibility, and geochemical characteristics very similar to those of the nearby outcrop. It was confirmed that a combination of physical, chemical, and biological factors affects the Stone Buddha statues. In particular, both the Stone Seated Buddha Triad and Stone Standing Buddha tend to be chipped off from the front and cracked and scaled from the back. The Stone Standing Buddha located outdoors experiences granularity decomposition and black algae formation, which accelerate the weathering under unfavorable conservation environments. The result of non-destructive physical property diagnosis using ultrasonic velocity showed that both the Stone Seated Buddha Triad and Stone Standing Buddha have been completely weathered (CW), indicating very poor physical properties.