• Title/Summary/Keyword: rock joint grouting

Search Result 32, Processing Time 0.016 seconds

A STUDY ON THE SAFETY ANALYSIS OF ROCK FILL DAM (1) (필댐의 안정성 해석 연구 (1))

  • HoWoongShon;DaeKeunLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.3
    • /
    • pp.165-177
    • /
    • 2003
  • The purpose of this paper is to analyze the behavior and to study the safety evaluation of the Unmun Dam located in Cheongdo-Gun of GyeongBuk Province, Korea. For this purpose, soil analyses including boring data, geophysical surveys were conducted. In this paper, especially many geophysical methods were adopted to configure out the subsurface situation of dam. Applied geophysical methods were: 1) electric resistivity survey, 2) high frequency magnetotelluric (HFMT) survey, 3) ground penetrating radar (GPR) survey, 4) seismic refraction survey, 5) seismic cross-hole tomography survey, and 6) high frequency impedance (ZHF) survey. Each of geophysical surveys were analyzed and joint analyses between geophysical surveys were also performed to deduce the more reliable subsurface information of Dam by using the features and characteristics of each geophysical survey. Since many defects, such as gravel and weathered rock blocks in the dam core, and lots of amounts of leakage, by boring analyses were found, reinforcement by compaction grouting system (CGS) has been conducted in some range of dam. Some geophysical data and data of geotechnical gauges were also used to confirm the effects of reinforcement. Electric resistivity, EM, GPR, ZHF, seismic refraction and seismic tomography surveys show that left side of dam is weak, which means the possibility of existence of gravel, rock block, water and cavities in the core of dam. This result coincides with the boring data. Especially, electric survey after reinforcement shows that even the right side of the dam has been deformed by the strong pressure during the reinforcement itself. As a conclusion, some problems in the dam found. Especially, the dam near spillway shows the high possibility of leakage. It should be pointed out that only the left side of he dam has not a leakage problem. As a whole, the dam has problems of weakness, because of unsatisfactory construction. It is strongly recommended that highly intensive monitoring is required.

  • PDF

Case Study of the Stability of a Large Cut-Slope at a Tunnel Portal (터널 입구부 대절토 사면 안정성 사례 연구)

  • Park, Dong Soon;Bae, Jong-Soem
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.115-129
    • /
    • 2015
  • The cut-slope of a large-sectional tunnel portal is recognized as a potential area of weakness due to unstable stress distribution and possible permanent displacement. This paper presents a case study of a slope failure and remediation for a large-scale cut-slope at a tunnel portal. Extensive rock-slope brittle failure occurred along discontinuities in the rock mass after 46 mm of rainfall, which caused instability of the upper part of the cut-slope. Based on a geological survey and face mapping, the reason for failure is believed to be the presence of thin clay fill in discontinuities in the weathered rock mass and consequent saturationinduced joint weakening. The granite-gneiss rock mass has a high content of alkali-feldspar, indicating a vulnerability to weathering. Immediately before the slope failure, a sharp increase in displacement rate was indicated by settlement-time histories, and this observation can contribute to the safety management criteria for slope stability. In this case study, emergency remediation was performed to prevent further hazard and to facilitate reconstruction, and counterweight fill and concrete filling of voids were successfully applied. For ultimate remediation, the grid anchor-blocks were used for slope stabilization, and additional rock bolts and grouting were applied inside the tunnel. Limit-equilibrium slope stability analysis and analyses of strereographic projections confirmed the instability of the original slope and the effectiveness of reinforcing methods. After the application of reinforcing measures, instrumental monitoring indicated that the slope and the tunnel remained stable. This case study is expected to serve as a valuable reference for similar engineering cases of large-sectional slope stability.