• Title/Summary/Keyword: rock fragmentation mechanism

Search Result 9, Processing Time 0.02 seconds

The rock fragmentation mechanism and plastic energy dissipation analysis of rock indentation

  • Zhu, Xiaohua;Liu, Weiji
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.195-204
    • /
    • 2018
  • Based on theories of rock mechanics, rock fragmentation, mechanics of elasto-plasticity, and energy dissipation etc., a method is presented for evaluating the rock fragmentation efficiency by using plastic energy dissipation ratio as an index. Using the presented method, the fragmentation efficiency of rocks with different strengths (corresponding to soft, intermediately hard and hard ones) under indentation is analyzed and compared. The theoretical and numerical simulation analyses are then combined with experimental results to systematically reveal the fragmentation mechanism of rocks under indentation of indenter. The results indicate that the fragmentation efficiency of rocks is higher when the plastic energy dissipation ratio is lower, and hence the drilling efficiency is higher. For the rocks with higher hardness and brittleness, the plastic energy dissipation ratio of the rocks at crush is lower. For rocks with lower hardness and brittleness (such as sandstone), most of the work done by the indenter to the rocks is transferred to the elastic and plastic energy of the rocks. However, most of such work is transferred to the elastic energy when the hardness and the brittleness of the rocks are higher. The plastic deformation is small and little energy is dissipated for brittle crush, and the elastic energy is mainly transferred to the kinetic energy of the rock fragment. The plastic energy ratio is proved to produce more accurate assessment on the fragmentation efficiency of rocks, and the presented method can provide a theoretical basis for the optimization of drill bit and selection of well drilling as well as for the selection of the rock fragmentation ways.

A Numerical Study on the Rock Fragmentation by TBM Cutter Penetration (TBM 커터 관입에 의한 암석 파쇄의 수치해석적 연구)

  • 백승한;문현구
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.444-454
    • /
    • 2003
  • Rock fragmentation technique by cutter penetration has widely been used in the mechanical tunnel excavation. Microcracks propagate and interact because of locally concentrated high stress induced by cutter penetration. which is caused by heterogeneity of rocks. In this study Weibull distribution function and degradation index are used to consider the strength heterogeneity of a rock and the degradation of rock properties after failure. Through the numerical analyses, it is shown that the lateral pressure has an important influence on the rock fragmentation. In the single cutter penetration, large chips are formed as lateral pressure increase. The cutter spacing is also an important factor that affects the rock fragmentation in the double cutter penetration. The fragmentation efficiency of the double cutter penetration is better when cutter spacing is 70 mm than 40 mm and 100 mm. From the results, it is expected that this study can be applied to a TBM tunnel design by understanding of chipping process and mechanism of rock due to cutter penetration.

Crack initiation and fragmentation processes in pre-cracked rock-like materials

  • Lee, Jooeun;Hong, Jung-Wuk
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1047-1059
    • /
    • 2018
  • This paper focuses on the cracking and fragmentation process in rock materials containing a pair of non-parallel flaws, which are through the specimen thickness, under vertical compression. Several numerical experiments are conducted with varying flaw arrangements that affect the initiation and tensile wing cracks, shear crack growth, and crack coalescing behaviors. To obtain realistic numerical results, a parallelized peridynamics formulation coupled with a finite element method, which is able to capture arbitrarily occurring cracks, is employed. From previous studies, crack initiation and propagation of tensile wing cracks, horsetail cracks, and anti-wing cracks are well understood along with the coalescence between two parallel flaws. In this study, the coalescence behaviors, their fragmentation sequences, and the role of an x-shaped shear band in rock material containing two non-parallel flaws are discussed in detail on the basis of simulation results strongly correlated with previous experimental results. Firstly, crack initiation and propagation of tensile wing cracks and shear cracks between non-parallel flaws are investigated in time-history and then sequential coalescing behavior is analyzed. Secondly, under the effect of varying inclination angles of two non-parallel flaws and overlapping ratios between a pair of non-parallel flaws, the cracking patterns including crack coalescence, fragmentation, and x-shaped shear band are investigated. These numerical results, which are in good agreement with reported physical test results, are expected to provide insightful information of the fracture mechanism of rock with non-parallel flaws.

Numerical modelling of bottom-hole rock in underbalanced drilling using thermo-poroelastoplasticity model

  • Liu, Weiji;Zhou, Yunlai;Zhu, Xiaohua;Meng, Xiannan;Liu, Mei;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.537-545
    • /
    • 2019
  • Stress analysis of bottom-hole rock has to be considered with much care to further understand rock fragmentation mechanism and high penetration rate. This original study establishes a fully coupled simulation model and explores the effects of overburden pressure, horizontal in-situ stresses, drilling mud pressure, pore pressure and temperature on the stress distribution in bottom-hole rock. The research finds that in air drilling, as the well depth increases, the more easily the bottom-hole rock is to be broken. Moreover, the mud pressure has a great effect on the bottom-hole rock. The bigger the mud pressure is, the more difficult to break the bottom-hole rock is. Furthermore, the maximum principal stress of the bottom-hole increases as the mud pressure, well depth and temperature difference increase. The bottom-hole rock can be divided into three main regions according to the stress state, namely a) three directions tensile area, b) two directions compression areas and c) three directions compression area, which are classified as a) easy, b) normal and c) hard, respectively, for the corresponding fragmentation degree of difficulty. The main contribution of this paper is that it presents for the first time a thorough study of the effect of related factors, including stress distribution and temperature, on the bottom-hole rock fracture rather than the well wall, using a thermo-poroelastoplasticity model.

The investigation of rock cutting simulation based on discrete element method

  • Zhu, Xiaohua;Liu, Weiji;Lv, Yanxin
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.977-995
    • /
    • 2017
  • It is well accepted that rock failure mechanism influence the cutting efficiency and determination of optimum cutting parameters. In this paper, an attempt was made to research the factors that affect the failure mechanism based on discrete element method (DEM). The influences of cutting depth, hydrostatic pressure, cutting velocity, back rake angle and joint set on failure mechanism in rock-cutting are researched by PFC2D. The results show that: the ductile failure occurs at shallow cutting depths, the brittle failure occurs as the depth of cut increases beyond a threshold value. The mean cutting forces have a linear related to the cutting depth if the cutting action is dominated by the ductile mode, however, the mean cutting forces are deviate from the linear relationship while the cutting action is dominated by the brittle mode. The failure mechanism changes from brittle mode with larger chips under atmospheric conditions, to ductile mode with crushed chips under hydrostatic conditions. As the cutting velocity increases, a grow number of micro-cracks are initiated around the cutter and the volume of the chipped fragmentation is decreasing correspondingly. The crack initiates and propagates parallel to the free surface with a smaller rake angle, but with the rake angle increases, the direction of crack initiation and propagation is changed to towards the intact rock. The existence of joint set have significant influence on crack initiation and propagation, it makes the crack prone to propagate along the joint.

Numerical Analysis on Controlled Tunnel Blasting by Heck Charge (다단 장약에 의한 터널 진동제어 발파의 수치해석)

  • 양형식;두준기;조상호;김원범
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.403-411
    • /
    • 2003
  • Controlled tunnel blasting by deck charge was suggested and simulated by PFC and FEM analyses. Analyzed results showed that suggested method is efficient in fragmentation and able to decrease in vibration level because of decreased amount of charge per delay and dispersion of deck charge. This phenomena was explained by failure mechanism and proved that it can be successfully applied to tunnel blasting.

Numerical Analysis on Fragmentation Mechanism by Indentation of Disc Cutter in a Rock Specimen with a Single Joint (단일절리를 포함한 암석 시험편에서 디스크 커터의 압입에 의한 파괴 메커니즘의 수치해석적 연구)

  • Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.440-449
    • /
    • 2009
  • LCM test is one of the most powerful and reliable methods of experiment for the cutter head design and the performance prediction of TBM. In many cases, however, the predicted design model can be directly applied to the field design, because this test may have an uppermost limit in preparation and/or transportation of the large size rock samples and the test for the jointed rock mass is not easy. When the proper and reasonable numerical modeling is considered to overcome this limit, the most adequate cutter head design for TBM could be presented without any complicate preconsideration in the field. In this study, the crack propagation patterns dependent on the contact point of disc cutter and the angle of rock joint are analyzed for the rock specimen with a single joint using the UDEC. The authors could derive the appropriate contact points of disc cutters and their space with respect to the joint angle in rock mass thru the numerical analysis.

Investigating the effects of non-persistent cracks' parameters on the rock fragmentation mechanism underneath the U shape cutters using experimental tests and numerical simulations with PFC2D

  • Fu, Jinwei;Haeri, Hadi;Sarfarazi, Vahab;Abad, Sh. Mohamadi Bolban;Marji, Mohammad Fatehi;Saeedi, Gholamreza;Yu, Yibing
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.495-513
    • /
    • 2022
  • This paper aims to study the fracture mechanism of rocks under the 'u'shape cutters considering the effects of crack (pre-existing crack) distances, crack spacing and crack inclination angles. The effects of loading rates on the rock fragmentation underneath these cutters have been also studied. For this purpose, nine experimental samples with dimensions of 5 cm×10 cm×10 cm consisting of the non-persistent cracks were prepared. The first three specimens' sets had one non-persistent crack (pre-existing crack) with a length of 2 cm and angularity of 0°, 45°, and 90°. The spacing between the crack and the "u" shape cutter was 2 cm. The second three specimens" set had one non-persistent crack with a length of 2 cm and angularity of 0°, 45°, and 90° but the spacing between pre-existing crack and the "u" shape cutter was 4 cm. The third three specimens'set has two non-persistent cracks with lengths of 2 cm and angularity of 0°, 45° and 90°. The spacing between the upper crack and the "u" shape cutter was 2 cm and the spacing between the lower crack and the upper crack was 2 cm. The samples were tested under a loading rate of 0.005 mm/s. concurrent with the experimental investigation. The numerical simulations were performed on the modeled samples with non-persistent cracks using PFC2D. These models were tested under three different loading rates of 0.005 mm/s, 0.01 mm/sec and 0.02 mm/sec. These results show that the crack number, crack spacing, crack angularity, and loading rate has important effects on the crack growth mechanism in the rocks underneath the "u" shape cutters. In addition, the failure modes and the fracture patterns in the experimental tests and numerical simulations are similar to one another showing the validity and accuracy of the current study.

Induction of Autophagy by Low Dose of Cisplatin in H460 Lung Cancer Cells (폐암세포주에서 저용량 시스플라틴에 의해 유도된 자가포식)

  • Shin, Jeong-Hyun;Jang, Hye-Yeon;Chung, Jin-Soo;Cho, Kyung-Hwa;Hwang, Ki-Eun;Kim, So-Young;Kim, Hui-Jung;Lee, Sam-Youn;Lee, Mi-Kung;Park, Soon-Ah;Moon, Sun-Rock;Lee, Kang-Kyu;Jo, Hyang-Jeong;Yang, Sei-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.1
    • /
    • pp.16-23
    • /
    • 2010
  • Background: Most lung cancer patients receive systemic chemotherapy at an advanced stage disease. Cisplatin-based chemotherapy is the main regimen for treating advanced lung cancer. Recently, autophagy has become an important mechanism of cellular adaptation under starvation or cell oxidative stress. The purpose of this study was to determine whether or not autophagy can occurred in cisplatin-treated lung cancer cells. Methods: H460 cells were incubated with RPMI 1640 and treated in $5{\mu}M$ or $20{\mu}M$ cisplatin concentrations at specific time intervals. Cells surviving cisplatin treatment were measured and compared using an MTT cell viability assay to cells that underwent apoptosis with autophagy by nuclear staining, apoptotic or autophagic related proteins, and autophagic vacuoles. The development of acidic vascular organelles was using acridine orange staining and fluorescent expression of GFP-LC3 protein in its transfected cells was observed to evaluate autophagy. Results: Lung cancer cells treated with $5{\mu}M$ cisplatin-treated were less sensitive to cell death than $20{\mu}M$ cisplatin-treated cells in a time-dependent manner. Nuclear fragmentation at $5{\mu}M$ was not detected, even though it was discovered at $20{\mu}M$. Poly (ADP-ribose) polymerase cleavages were not detected in $5{\mu}M$ within 24 hours. Massive vacuolization in the cytoplasm of $5{\mu}M$ treated cells were observed. Acridine orange stain-positive cells was increased according in time-dependence manner. The autophagosome-incorporated LC3 II protein expression was increased in $5{\mu}M$ treated cells, but was not detected in $20{\mu}M$ treated cells. The expression of GFP-LC3 were increased in $5{\mu}M$ treated cells in a time-dependent manner. Conclusion: The induction of autophagy occurred in $5{\mu}M$ dose of cisplatin-treated lung cancer cells.