• Title/Summary/Keyword: rock face

Search Result 321, Processing Time 0.024 seconds

THE INFLUENCE OF THE DIE HARDENER ON GYPSUM DIE (석고 다이에 대한 다이 강화제의 영향)

  • Kim, Young-Rim;Park, Ju-Mi;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.546-554
    • /
    • 2007
  • Statement of problem: Die materials require abrasion resistance, dimensional stability with time, and high surface wettability for adequate material properties. Wear of gypsum materials is a significant problem in the fabrication of accurately fitting cast prosthetic devices. So It has been recommended that the use of die hardener before carving or burnishing of the wax pattern. Purpose: The purpose of this study was to compare the abrasion resistance and surface microhardness(Knoop) with 3 commonly used gypsum die materials(MG Crystal Rock, Super plumstone, GC $FUJIROCK^{(R)}$ EP) with and without the application of 2 die hardeners. Material and methods: Three die materials were evaluated for abrasion resistance and surface microhardness after application of 2 die hardeners(Die hardener and Stone die & plaster hardener). Thirty specimens of each gypsum material were fabricated using an impression of resin die(Pattern resin; GC Corporation, Japan) with 1-mm high ridges, sloped 90 degrees. Gypsum materials were mixed according to manufacturer's recommendations and allowed to set 24 hours before coating. Specimens were arbitrary assigned to 1 of 3 treatment subgroups (n=10/subgroup): no treatment(control), coated with Die hardener, and coated with Stone die & plaster hardener. Abrasion resistance(measured by weight loss) was evaluated using device in 50g mass perpendicular to the ridges. Knoop hardness was determined by loading each specimen face 5 times for 15 seconds with a force of 50g. A scanning electron microscope was used to evaluate the surface of specimens in each treatment subgroup. Conclusions: The obtained results were as follows: 1. 3 types of die stone evaluated in this study did not show significant differences in surface hardness and abrasive resistance(P<.05). 2. In the abrasive resistance test, there were no significant differences between GC $FUJIROCK^{(R)}$ EP and MG Crystal Rock with or without 2 die hardener(P<.05). 3. Super plumstone treated with Stone die & plaster hardener showed increased wear loss(P<.05) 4. Die hardener coatings used in this study decreased the surface hardness of the gypsum material(P<.05).

Analysis on Surface Collapse of the Road NATM Tunnel through the Weathered Rock (풍화대를 통과하는 도로 NATM 터널의 천단부 함몰에 대한 연구)

  • Shin, Eun-Chul;Yoo, Jai-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.55-64
    • /
    • 2016
  • The construction of the road NATM tunnel, which undergoes the weathered zone of the mountain, was in process with the reinforcement methods such as the rock bolt, shotcrete depositing, and the multi step grout with large diameter steel pipe. The collapse from the ceiling, and on the ground surface area(sink hole), of which were measured to be 25m from the ground surface($V=12m(W){\times}14m(L){\times}5m(H)=840m^3$), as well as excessive displacements in the tunnel, had occurred. In order to execute the necessary reconstruction work, the causes of the surface collapses were inspected through the field investigation, in-situ tests, and numerical analysis. As a result, several proper solutions were suggested for both internal and external reinforcements for the tunnel. As a result of numerical analysis, the collapsed zone of the tunnel was reinforced up to 0.5D~1.0D laterally by the cement grouting on the ground surface, 0.5D longitudinally by the multi step grout with large diameter steel pipe in tunnel. With further reinforcement implemented by rebars in lining, the forward horizontal boring was executed to the rest of the tunnel to evaluate the overall status of the tunnel face. Appropriate reinforcement methods were provided if needed.

Mechanical Behavior of Tunnel Portal in Horizontal Arch Slope (수평 아치형 터널 갱구부 비탈면의 역학적 거동)

  • Yang, Mun-Sang;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.50-61
    • /
    • 2000
  • The ground around the portal of a tunnel is the most typical part showing the 3-dimensional mechanical behavior in the tunnel. The portal slope is constructed at the weathered soft rock-mass, and remains as a potential sliding mass. The slope failure around the tunnel portal may happen drastically and induce the great disaster; hence, for the permanent stability several special techniques are required. To solve this problem, the ground around the tunnel portal may be excavated in the arch shape to develop the arching effect in horizontal direction. With the arch-type portal slope, one can reduce considerably the excavation mass and the damage of environments. This approach has not been attempted yet due to the lack of understanding and the well-defined analyzing method, so the retaining wall type portal is more universal. The 3-dimensional finite element analyses were carried out to prove that the arch type is more advantageous in safety and cost than the right angle type. The influence of the tunnel construction sequence and the strength of the rock-mass on the slope stability was investigated by focusing on the maximum shear strain in the slope, and the yield zone at the tunnel face.

  • PDF

Case study of design and construction for cutter change in EPB TBM tunneling (EPB 쉴드 TBM 커터 교체 설계 및 시공 사례 분석)

  • Lee, Jae-won;Kang, Sung-wook;Jung, Jae-hoon;Kang, Han-byul;Shin, Young Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.553-581
    • /
    • 2022
  • Shortly after tunnel boring machine (TBM) was introduced in the tunneling industry, the use of TBM has surprisingly increased worldwide due to its performance together with the benefit of being safely and environmentally friendly. One of the main cost items in the TBM tunneling in rock and soil is changing damaged or worn cutters. It is because that the cutter change is a time-consuming and costly activity that can significantly reduce the TBM utilization and advance rate and has a major effect on the total time and cost of TBM tunneling projects. Therefore, the importance of accurately evaluating the cutter life can never be overemphasized. However, the prediction of cutter wear in soil, rock including mixed face is very complex and not yet fully clarified, subsequently keeping engineers busy around the world. Various prediction models for cutter wear have been developed and introduced, but these models almost usually produce highly variable results due to inherent uncertainties in the models. In this study, a case study of design and construction of disc cutter change is introduced and analyzed, rather than proposing a prediction model of cutter wear. As the disc cutter is strongly affected by the geological condition, TBM machine characteristic and operation, authors believe it is very hard to suggest a generalized prediction model given the uncertainties and limitations therefore it would be more practical to analyze a real case and provide a detailed discussion of the difference between prediction and result for the cutter change. By doing so, up-to-date idea about planning and execution of cutter change in practice can be promoted.

A study for recycling plan of excavated soil and filter cake of slurry shield TBM for road construction (도로공사 이수식 쉴드 TBM 굴착토 및 필터케이크 재활용방안 연구)

  • Nam, Sung-min;Park, Seo-young;Ahn, Byung-cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.599-615
    • /
    • 2022
  • In order to excavate underground tunnel most safely such as Han river, the slurry shield TBM method is applied to cope with face of high water pressure for many metro projects. In downtown subway project most of excavated soil is discharged externally whereas in road construction excavated soil is used as filling materials so it becomes important factor for success of the project. After excavated soil, weathered rock and soft rock are discharged with bentonite through discharge pipe to slurry treatment plant then those soils are separated in separation plant according to those size. Fine grained soil has been discarded together with filter cake but it is not toxic and can be mixed with coarse aggregate in proper ratio so this study is performed to find use of qualified filling material to meet quality standard. Therefore, in this study, legal standards and quality standards for the utilization of excavated soil of the slurry shield TBM method were examined and test was conducted to derive recycling way for filter cake and aggregate. And a plan for using it as a filling material for road construction was derived. Because bentonite is a clay composed of montmorillonite, and the excavated soil in the tunnel is also non-toxic, disposal of this material can waste social cost so it is expected to be helpful in the underground space development project that carries out the TBM project by recycling it as a valuable resource.

Probabilistic Kinematic Analysis of Rock Slope Stability Using Terrestrial LiDAR (지상라이다를 이용한 확률론적 해석기법 기반의 운동학적 안정성 해석)

  • Hong, Seok Kwon;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.52 no.3
    • /
    • pp.231-241
    • /
    • 2019
  • Kinematic analysis determines the stability of rock slope by analyzing the relationship between the slope face orientation and the discontinuity orientation. In this study, terrestrial LiDAR was used to obtain a large amount of discontinuity orientation data and then, the probabilistic characteristics of the orientation data obtained using terrestrial LiDAR were analyzed. Subsequently, the probabilistic kinematic analysis was carried out using the discontinuity orientations generated randomly from Fisher function in Monte Carlo simulation. In addition, the probabilistic kinematic analysis was also performed using the actual orientation data obtained from the terrestrial LiDAR to compare their results. Consequently, the results of both probabilistic analyses showed similar results. Therefore, if sufficient orientation data are provided by other means such as terrestrial LiDAR, the probabilistic analysis will show reasonable results using the actual field data without randomly generating orientation data. In addition, the deterministic kinematic analysis was also carried out using representative orientation of discontinuity sets. The analysis result of the probabilistic analysis showed similar results with the deterministic analysis because the dispersion of the discontinuity orientations in a joint set is not large.

Modeling of Geochemical Variations and Weathering Depth on the Surface of Pelitic Rocks in Periodical Submerging Zone: Bangudae Petroglyphs (주기적 침수구역 이질암 표면의 지구화학적 변화와 풍화심도 모델링: 반구대 암각화)

  • Chan Hee Lee;Yu Gun Chun
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.583-596
    • /
    • 2022
  • The rock surface of Bangudae petroglyphs is mainly dark brown hornfelsified shales by contact metamorphism. The surface form a weathered layer of a invariable depth, and there is a difference with mineral and chemical composition between weathered and non-weathered layers. Surface of the petroglyphs has been discolored to light brown over the face due to biological and chemical weathering. As the measuring chromaticity based on the non-weathered layer, the whiteness and yellowness increased in the weathered layer, and the color difference (ΔE) was 5.54 to 36.89 (mean 17.26). In the weathered layer of the petroglyph surface, the CaO content was reduced by about 90% compared to the non-weathered layer, and Sr also showed the same trend. In particular, the mean porosity of the non-weathered layer was 0.4%, but it was estimated as 25.0% in the weathered layer. This is interpreted as the fact that calcite reacts with water, and forms a weathered layer from the surface as it is eluted. Based on the weathering depth modeling of the petroglyphs using the penetration characteristics of X-rays, the weathering depth of rock faces was found to be 1 to 2mm. However, the area classified as 2mm or more estimated to be a maximum of 3 to 4mm, considering the weathering depth around the petroglyphs surface.

The prosthetic approach and principle for an collapsed VDO ; A clinical case of pseudo Class III patient (저위교합환자의 보철적 접근법과 이론 : Pseudo Class III 교합환자 증례)

  • Kwon, Kung-Rock;Choi, Dae-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.20 no.2
    • /
    • pp.121-134
    • /
    • 2004
  • This article describes a clinical protocol for the conventional rehabilitation of patient diagnosed with partial anodontia. A combined dental therapy approach was used and included endodontic therapy and root capping on the maxillary central incisors, fabrication of a maxillary overdenture, and fabrication of mandibular konus overdenture supported by 3 konus abutments. Within this protocol, tooth-supported overdenture prostheses are used for 2 purposes: first, to obtain the most rigid retention and function at an established maxillary-mandibular relationship; and second, to continuously maintain function and esthetic appearance applying immediate dentures after teeth extraction. The idea behind this protocol and its associated clinical procedures is presented along with a discussion compared with implant therapy. In the case introduced, and after 7 years of observation, the therapy can be seen as a success. We increased the occlusal vertical height in this case, but it would be more appropriate to see this as recovering the occlusal vertical height that was lost. The process of increasing the occlusal vertical height, that is restoration of the face, modification of the extrinsic occlusion of the incisors, and retraction of the mandible is very difficult and important. Ultimately, class III malocclusion is fixed, adequate occlusal vertical height is gained, and the retracted posterior anodontial portion is restored by prosthodontic dentures based on the rigid support theory. The result of the therapy done on the later-achieved malocclusion with partial anodontia on the posterior portion must consider the following in order to maintain the safety of the esthetics of the tooth and face for a period of time: 1) occlusal restoration with an ideal occlusal vertical height, 2) allowance of the final occlusion induced by the functional relationship of the upper and lower jaw, 3)final occlusion functionally induced by the lip competence limit.

Case Studies on Applications of Convergence Measurement Systems at the Stages of Tunnel Construction and Maintenance (터널 시공 및 유지관리 단계 내공변위 계측시스템 적용사례 연구)

  • Lee, Dae-Hyuck;Han, Il-Yeong;Kim, Ki-Sun;Jin, Suk-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.59-69
    • /
    • 2000
  • Three-dimensional total station system which integrated the instrument with Target Pin and TEMS 3D software developed by SKEC R&D center was applied to a tunnel excavation for monitoring of convergence and crown settlement. The efficiency of the system was proved as the result in the aspects of exact monitoring and prediction of rock conditions ahead of the face. To monitor the behavior of tunnel lining at the maintenance stage, DOCS system was applied to the subway tunnel section. Such many effects as the vibration of sensors, verification of the system efficiency, the effect of test trains operation, the variation of temperature and the effect of high voltage was checked. Thus the management scheme for tunnel maintenance was laid out as a proposal.

  • PDF

Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation

  • Wang, Changxiang;Shen, Baotang;Chen, Juntao;Tong, Weixin;Jiang, Zhe;Liu, Yin;Li, Yangyang
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.485-495
    • /
    • 2020
  • Based on the movement characteristics of overlying strata with gangue backfilling, the compression test of gangue is designed. The deformation characterristics of gangue is obtained based on the different Talbot index. The deformation has a logarithmic growth trend, including sharp deformation stage, linear deformation stage, rheological stage, and the resistance to deformation changes in different stages. The more advantageous Talbot gradation index is obtained to control the surface subsidence. On the basis of similarity simulation test with gangue backfilling, the characteristics of roof failure and the evolution of the supporting force are analyzed. In the early stage of gangue backfilling, beam structure damage directly occurs at the roof, and the layer is separated from the overlying rock. As the working face advances, the crack arch of the basic roof is generated, and the separation layer is closed. Due to the supporting effect of filling gangue, the stress concentration in gangue backfilling stope is relatively mild. Based on the equivalent mining height model of gangue backfilling stope, the relationship between full ratio and mining height is obtained. It is necessary to ensure that the gradation of filling gangue meets the Talbot distribution of n=0.5, and the full ratio meets the protection grade requirements of surface buildings.