• 제목/요약/키워드: rock creep

검색결과 52건 처리시간 0.02초

An improved Maxwell creep model for salt rock

  • Wang, Jun-Bao;Liu, Xin-Rong;Song, Zhan-Ping;Shao, Zhu-Shan
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.499-511
    • /
    • 2015
  • The creep property of salt rock significantly influences the long-term stability of the salt rock underground storage. Triaxial creep tests were performed to investigate the creep behavior of salt rock. The test results indicate that the creep of salt rock has a nonlinear characteristic, which is related to stress level and creep time. The higher the stress level, the longer the creep time, the more obvious the nonlinear characteristic will be. The elastic modulus of salt rock decreases with the prolonged creep time, which shows that the creep damage is produced for the gradual expansion of internal cracks, defects, etc., causing degradation of mechanical properties; meanwhile, the creep rate of salt rock also decreases with the prolonged creep time in the primary creep stage, which indicates that the mechanical properties of salt rock are hardened and strengthened. That is to say, damage and hardening exist simultaneously during the creep of salt rock. Both the damage effect and the hardening effect are considered, an improved Maxwell creep model is proposed by connecting an elastic body softened over time with a viscosity body hardened over time in series, and the creep equation of which is deduced. Creep test data of salt rock are used to evaluate the reasonability and applicability of the improved Maxwell model. The fitting curves are in excellent agreement with the creep test data, and compared with the classical Burgers model, the improved Maxwell model is able to precisely predict the long-term creep deformation of salt rock, illustrating our model can perfectly describe the creep property of salt rock.

Study on the mechanical properties and rheological model of an anchored rock mass under creep-fatigue loading

  • Song, Yang;Li, Yong qi
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.535-546
    • /
    • 2020
  • The stress environment of deep rock masses is complex. Under the action of earthquakes or blasting, the strength and stability of anchored rock masses in fracture zones or faults are affected. To explore the variation in anchored rock masses under creep-fatigue loading, shear creep comparative testing of anchored marble specimens with or without fatigue loading is performed. Considering the damage variable of rock under fatigue loading, a rheological model is established to characterize the whole shear creep process of anchored rock masses under creep-fatigue loading. The results show that (1) the overall deformation of marble under creep-fatigue loading is larger than that under only shear creep loading, and the average deformation is increased by 18.3%. (2) By comparing the creep curves with and without fatigue loading, the two curves basically coincide when the first level stress is applied, and the two curves are stable with the increase in stress level. The results show that the strain difference among the specimens increases gradually in the steady-state stage and reaches the maximum at the fourth level. (3) The shear creep is described by considering the creep mechanical properties of anchored rock masses under fatigue loading. The accuracy of this creep-fatigue model is verified by laboratory tests, and the applicability of the model is illustrated by the fitting parameter R2. The proposed model provides a theoretical basis for the study of anchored rock masses under low-frequency earthquakes or blasting and new methods for the stability and reinforcement of rock masses.

Modeling time-dependent behavior of hard sandstone using the DEM method

  • Guo, Wen-Bin;Hu, Bo;Cheng, Jian-Long;Wang, Bei-Fang
    • Geomechanics and Engineering
    • /
    • 제20권6호
    • /
    • pp.517-525
    • /
    • 2020
  • The long-term stability of rock engineering is significantly affected by the time-dependent deformation behavior of rock, which is an important mechanical property of rock for engineering design. Although the hard rocks show small creep deformation, it cannot be ignored under high-stress condition during deep excavation. The inner mechanism of creep is complicated, therefore, it is necessary to investigate the relationship between microscopic creep mechanism and the macro creep behavior of rock. Microscopic numerical modeling of sandstone creep was performed in the investigation. A numerical sandstone sample was generated and Parallel Bond contact and Burger's contact model were assigned to the contacts between particles in DEM simulation. Sensitivity analysis of the microscopic creep parameters was conducted to explore how microscopic parameters affect the macroscopic creep deformation. The results show that the microscopic creep parameters have linear correlations with the corresponding macroscopic creep parameters, whereas the friction coefficient shows power function with peak strength and Young's modulus, respectively. Moreover, the microscopic parameters were calibrated. The creep modeling curve is in good agreement with the verification test result. Finally, the creep curves under one-step loading and multi-step loading were compared. This investigation can act as a helpful reference for modeling rock creep behavior from a microscopic mechanism perspective.

Creep properties and damage model for salt rock under low-frequency cyclic loading

  • Wang, Jun-Bao;Liu, Xin-Rong;Liu, Xiao-Jun;Huang, Ming
    • Geomechanics and Engineering
    • /
    • 제7권5호
    • /
    • pp.569-587
    • /
    • 2014
  • Triaxial compression creep tests were performed on salt rock samples using cyclic confining pressure with a static axial pressure. The test results show that, up to a certain time, changes in the confining pressure have little influence on creep properties of salt rock, and the axial creep curve is smooth. After this point, the axial creep curve clearly fluctuates with the confining pressure, and is approximately a straight line both when the confining pressure decreases and when it increases within one cycle period. The slope of these lines differs: it is greater when the confining pressure decreases than when it increases. In accordance with rheology model theory, axial creep equations were deduced for Maxwell and Kelvin models under cyclic loading. These were combined to establish an axial creep equation for the Burgers model. We supposed that damage evolution follows an exponential law during creep process and replaced the apparent stress in creep equation for the Burgers model with the effective stress, the axial creep damage equation for the Burgers model was obtained. The model suitability was verified using creep test results for salt rock. The fitting curves are in excellent agreement with the test curves, so the proposed model can well reflect the creep behavior of salt rock under low-frequency cyclic loading. In particular, it reflects the fluctuations in creep deformation and creep rate as the confining pressure increasing and decreasing under different cycle periods.

수학적 개념 해를 적용한 미고결 암석의 Creep거동 해석 (Creep Behavior of Unconsolidated Rock with Mathematical Concept Solution)

  • 장명환
    • 터널과지하공간
    • /
    • 제28권1호
    • /
    • pp.25-37
    • /
    • 2018
  • 미고결 암석에 대한 Creep 특성을 분석하고자 Burger 모델을 이용하였다. Burger 모델은 자료쌍 D(u,t)으로부터 4개의 역학적 매개변수를 결정 하여야 한다. 본 연구에서는 수학적 개념 해를 적용하여 매개변수를 결정 하였다. 미고결 암석에 대한 Burger 모델의 결정된 매개변수를 이용하여 Creep을 3년간 가속시켰다. 그 결과 Creep 거동은 수렴이 되지 않고 지속적인 변형거동을 보였다. 따라서 본 광산에서는 Roofbolt 보다 U-Beam 적용이 안정성 측면에서 더 적합 할 것으로 분석 되었다.

가곡광산 화강암의 크리프 특성 (Creep Characteristics of Granite in Gagok Mine)

  • 윤용균;김병철;조영도
    • 터널과지하공간
    • /
    • 제20권5호
    • /
    • pp.390-398
    • /
    • 2010
  • 암석의 시간의존성 거동은 지하 광산 설계나 지하 암반구조물의 장기 안정성 평가를 위한 기본 입력자료로써 사용되는 매우 중요한 특성이다. 본 연구에서는 가곡광산에서 채취한 화강암 시험편에 대해 일축압축 크리프시험을 실시하였다. 측정된 크리프 변형률을 모사하기 위하여 Burgers 모형, Griggs 크리프법칙, Singh 크리프법칙을 사용하였으며 이중에서 Griggs 크리프법칙이 가곡광산 화강암의 실제 크리프 변형 거동을 가장 우수하게 모사하는 것으로 나타났다.

Analysis on the creep response of bolted rock using bolted burgers model

  • Zhao, Tong-Bin;Zhang, Yu-Bao;Zhang, Qian-Qing;Tan, Yun-Liang
    • Geomechanics and Engineering
    • /
    • 제14권2호
    • /
    • pp.141-149
    • /
    • 2018
  • In this paper, the creep behavior of bolted rock was analyzed by using the unconfined creep tests and the numerical results. Based on the test results, the Bolted Burgers creep model (B-B model) was proposed to clarify the creep mechanism of rock mass due to rock bolts. As to the simulation of the creep behaviour of bolted rock, a new user-defined incremental iterative format of the B-B model was established and the open-source $FLAC^{3D}$ code was written by using the object-oriented language (C++). To check the reliability of the present B-B creep constitutive model program, a numerical model of a tunnel with buried depth of 1000 m was established to analyze the creep response of the tunnel with the B-B model support, the non-support and the bolt element support. The simulation results show that the present B-B model is consistent with the calculated results of the inherent bolt element in $FLAC^{3D}$, and the convergence deformation can be more effectively controlled when the proposed B-B model is used in the $FLAC^{3D}$ software. The big advantage of the present B-B creep model secondarily developed in the $FLAC^{3D}$ software is the high computational efficiency.

암(岩)과 콘크리트의 Creep 특성에 대한 비교평가 (Creep Characteristics of Rocks and Concrete - A Comparison)

  • 김학문
    • 한국터널지하공간학회 논문집
    • /
    • 제3권2호
    • /
    • pp.33-56
    • /
    • 2001
  • 모든 암석들이 취성이나 시간변형거동인 Creep 특성을 나타낸다는 것은 잘 알려진 사실이다. 암석들에 대한 시간변형거동의 이해는 토목이나 터널기술분야에 필수적인 요건이 된다. 그러므로 다양한 하중조건과 물리적 환경상태에서 암석과 콘크리트에 대한 Creep특성을 조사하였다. 두가지 다른 Creep변형예측공식을 사용하여 그 결과를 비교함으로서 이들 재료들의 유사점을 찾아보았다. Creep 변형 예측공식을 사용하여 3축압축 상태에서 얻어진 실험결과들과 비교 평가하였다.

  • PDF

Nonlinear creep model based on shear creep test of granite

  • Hu, Bin;Wei, Er-Jian;Li, Jing;Zhu, Xin;Tian, Kun-Yun;Cui, Kai
    • Geomechanics and Engineering
    • /
    • 제27권5호
    • /
    • pp.527-535
    • /
    • 2021
  • The creep characteristics of rock is of great significance for the study of long-term stability of engineering, so it is necessary to carry out indoor creep test and creep model of rock. First of all, in different water-bearing state and different positive pressure conditions, the granite is graded loaded to conduct indoor shear creep test. Through the test, the shear creep characteristics of granite are obtained. According to the test results, the stress-strain isochronous curve is obtained, and then the long-term strength of granite under different conditions is determined. Then, the fractional-order calculus software element is introduced, and it is connected in series with the spring element and the nonlinear viscoplastic body considering the creep acceleration start time to form a nonlinear viscoplastic creep model with fewer elements and fewer parameters. Finally, based on the shear creep test data of granite, using the nonlinear curve fitting of Origin software and Levenberg-Marquardt optimization algorithm, the parameter fitting and comparative analysis of the nonlinear creep model are carried out. The results show that the test data and the model curve have a high degree of fitting, which further explains the rationality and applicability of the established nonlinear visco-elastoplastic creep model. The research in this paper can provide certain reference significance and reference value for the study of nonlinear creep model of rock in the future.

화강암의 열 크립 거동에 관한 연구 (A Study on the Thermal Creep Behavior of Granite)

  • 장명환;양형식
    • 터널과지하공간
    • /
    • 제8권1호
    • /
    • pp.1-7
    • /
    • 1998
  • In order to get the information of the deformational behavior of rock masses with time in waste disposal repository, it is necessary to measure the relationships between stress and strain and time for temperature. A creep law is used in conjunction with the elastic moduli to calculate stress and displacement following waste emplacement. Exponential-time law's parameters consist of stress and temperature. In this study, thermal creep test was carried out for Whangdeung granite. The measured creep deformation behavior was well explained by exponential time law and generalized Kelvin's rheological model. Mechanicla coefficients for exponential-time creep law showed the clear tendency of temperature dependent while those for Kelvein's model didn't.

  • PDF