본 논문에서는 국내 여러 지역에서 수행된 도로, 철도 및 기타 토목공사를 위한 설계과정에서 조사가 이루어진 현지조사와 시추코아 및 시추공을 대상으로 암반평가가 이루어진 자료들을 대상으로 암반분류방법간의 상관관계에 대해 조사하였다. 상관관계에 대한 해석은 암반분류에서 많이 사용되고 있는 RMR과 Q분류법간의 상관관계 그리고 RQD와 두 암반평가방법간의 관계에 대하여 암석성인별 분류 즉 화성암, 퇴적암 및 변성암별로 검토를 실시하였다. 전체적으로 분류방법의 상관관계는 좋게 나타나고 있다. 그리고 음파검층에 의한 탄성파 P파 속도와 RMR의 상관관계를 고찰하였는데, 이 두 요소간의 상관성은 비교적 양호하였으며 보다 신뢰성 있는 관계식을 유도하기 위한 노력이 필요하다.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.41
no.6
/
pp.271-278
/
2004
In this paper, we propose a content-based audio genre classification algorithm that automatically classifies the query audio into five genres such as Classic, Hiphop, Jazz, Rock, Speech using digital sign processing approach. From the 20 seconds query audio file, the audio signal is segmented into 23ms frame with non-overlapped hamming window and 54 dimensional feature vectors, including Spectral Centroid, Rolloff, Flux, LPC, MFCC, is extracted from each query audio. For the classification algorithm, k-NN, Gaussian, GMM classifier is used. In order to choose optimum features from the 54 dimension feature vectors, SFS(Sequential Forward Selection) method is applied to draw 10 dimension optimum features and these are used for the genre classification algorithm. From the experimental result, we can verify the superior performance of the proposed method that provides near 90% success rate for the genre classification which means 10%∼20% improvements over the previous methods. For the case of actual user system environment, feature vector is extracted from the random interval of the query audio and it shows overall 80% success rate except extreme cases of beginning and ending portion of the query audio file.
In this study, the relationship between in situ seismic wave velocities and RMR (rock mass rating) was investigated in a test bed for the examination of the basis of rock classification (RMR) based on seismic wave velocity. The seismic wave velocity showed a monotonous increase with depth. It was also found that there was no systematic correlation between the seismic wave velocity (Vp) and other parameters (RQD, joint spacing, UCS, rock core Vp, and RMR) collected at the same depth of the same borehole. However, correlative relation was observed among RMR, RQD, and joint spacing. On the other hand, when all the data in the borehole (three holes) are examined without considering the depth, Vp still shows no correlation with RMR parameters (e.g., correlative coefficient for uniaxial compressive strength and joint spacing are 0.039 and 0.091, respectively), but Vp shows weak correlative relation with RMR and RQD (correlative coefficient for RQD and RMR are 0.193 and 0.211, respectively). Thus, it is found that it is difficult to deduce physical properties of rock mass directly from seismic wave velocities, but the seismic wave velocity can be used as a tool to approximate rock mass properties because of weaker correlation between Vp and RMR with RQD. In addition, the velocity value of for soft and moderate rocks suggested by widely used construction standards is slower than that of the observed velocity, implying that the standards need to be examined and revised.
This study evaluated the side resistance of drilled shafts socketed into rock sections. Commonly used analysis methods for side resistance of piles in rocks are examined by utilizing a large number of load test data. The analysis of the unit side resistance of pile foundations embedded into rock sections is based on an empirical coefficient (α) and the uniaxial compressive strength (qu) or its root (${\sqrt{q_u}}$). The Davisson criterion was used to interpret the resistance capacity from the load test results to acquire the computed relationships. The α-${\sqrt{q_u}}$ relationship is proven to be reliable in the prediction of friction resistance. This study further analyzed the relationship by including the effect of rock quality designation (RQD) on the results. Analysis results showed that the analysis model of α-${\sqrt{q_u}}$-RQD provided better prediction and reliability considering the RQD classification. Based on these analyses, the side resistance of drilled shafts socked into rocks is provided with statistical data to support the analysis.
Journal of the Korean Society of Environmental Restoration Technology
/
v.7
no.2
/
pp.12-20
/
2004
This study was carried out from January 1998 to December 1999 to report the revegetation of cutting-rock slopes and a design standard in the highway cut-slopes. The field data was collected from the 67 sites cutting-rock slopes of highways, local roads, and field test. As the result of analyze, cutting-rock slopes revegetation measures were 16 types. There were Vine planting(3 types), Hydroseeding measures with seed-fertilizer-soil materials(5 types), Vegetaion-base spraying measures(5 types), and Stability measures(3 types). The factors affecting the plant coverage rates of cutting-rock slopes were the slope gradient, the slope width and direction. The plant coverage rate decreases in the condition of steep slope and long slope width and length(height). In addition, the plant coverage rates of the westward and southward were lower than that of the northward and eastward. Most dominant species were Zoysia japonica, Lespedeza cyrtobotrya, Lespedeza cuneata, Rubus crataegifolius, Miscanthus sinensis, Arrundinella hirta, Themeda triandra, and Oenothera odorata. Exotic species were Eragrostis curvula(Weeping lovegrass), Dactylis glomerata Orchardgrass), Lolium perenne(Perennial ryegrass), and Festuca arundinacea(Tall fescue). It is recommended to adjust the proposed factor as environment, topsoil, classification of rock, field condition and characteristic related with revegetation measures on slopes for the presentation of revegetation standard.
These days, as Interest in Image recognition with deep learning is increasing, there has been a lot of research in image recognition using deep learning. In this study, we propose a system for classifying rocks through rock images of 18 types of rock(6 types of igneous, 6 types of metamorphic, 6 types of sedimentary rock) which are addressed in the high school curriculum, using CNN model based on Tensorflow, deep learning open source framework. As a result, we developed a classifier to distinguish rocks by learning the images of rocks and confirmed the classification performance of rock classifier. Finally, through the mobile application implemented, students can use the application as a learning tool in classroom or on-site experience.
Kim, Kwang-Yeom;Kim, Sung-Kwon;Kim, Chang-Yong;Kim, Kwang-Sik
Tunnel and Underground Space
/
v.19
no.6
/
pp.479-489
/
2009
Appropriate investigation of ground condition near excavation face in tunnelling is an inevitable process for safe and economical construction. In this study mechanical parameters from drilling process for blasting were investigated for the purpose of predicting the ground condition, especially rock mass strength, ahead of tunnel face. Rock mass strength is one of the most important factors for classification of rock mass and making a decision of support type in underground construction. Several rock specimens which are considered homogeneous and having different strength values respectively were tested by hydraulic drill machines generally used. As a result, penetration rate is fairly related with rock mass strength among drilling parameters. It is also found that penetration rate increases along with the higher impact pressure even under same rock strength condition. It is finally suggested that new prediction method for rock mass strength using percussive pressure and penetration rate during drilling work can be utilized well in construction site.
IEMEK Journal of Embedded Systems and Applications
/
v.13
no.4
/
pp.215-223
/
2018
Recently, as interest of wearable devices has increased, commercially available smart wristbands and applications have been used as a tool for personal healthy management. However most previous studies have focused on evaluating the accuracy and reliability of the technical problems of wearable devices, especially step counts, walking distance, and energy consumption measured from the smart wristbands. In this study, we propose a physical activity evaluation model using classification rules, induced from the associative classification mining approach. These rules associated with five physical activities were generated by considering activities and walking times in target heart rate zones such as 'Out-of Zone', 'Fat Burn Zone', 'Cardio Zone', and 'Peak Zone'. In the experiment, we evaluated the prediction power of classification rules and verified its effectiveness by comparing classification accuracies between the proposed model and support vector machine.
Study was made on the spectral characteristics of rock samples including bentonites collected from the northern Ulsan area. The geology of the area consists mainly of sediments of the Kyongsang Series and Bulguksa granite, the Tertiary volcanics, andesites and tuffs. Relative reflectances of meshed samples(2.5~10mm) to BaSO$_4$ are measured at 6 Landsat TM spectral windows (excluding the thermal band) with HHRR, and their reflection charactristics were analysed. In addition, three different data selection schemes including the Eulidean distance, multiple regression, and PCA weight methods were applied to the 30 TM ratio channels, derived from the above 6 bands. The selected data sets were subject to two unsupervised classification techniques(FA and ISODATA) in order to compare the effectiveness for classification of particularly bentonite from others. As a result, in ISODATA analysis the multiple regression model shows the best, followed by the Euliean distances one. The PCA weight model seems to show some confusion. In FA, though difficult for quantitative analysis, the best still seems to be the regression model. Among ratio bands, rations of band 7 or 5 against other bands represent the best contribution in classification of bentonites from others.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.