• Title/Summary/Keyword: rock cavern

Search Result 158, Processing Time 0.023 seconds

A Case Study of Correlation between Inflows and Geological Structures around Underground Caverns (지하 유류저장 공동의 지질구조와 공동누수량 상호관계에 관한 사례)

  • 전한석
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.79-93
    • /
    • 2000
  • When caverns are excavated, it is very important to understand the distribution and charateristics of geological structures because the structures have an significant effect on grouting, rock reinforcement, and groundwater flow, etc. The main water bearing fractures have an orientation of N50~60W and these fractures are known as tension fractures. Their orientation coincides with a long elliptical axis ofpumping test, and they cross the tension fractures of N10~30E. They have typical fracture systems ofrhombic type in this area.

  • PDF

A Numerical Study on the Progressive Brittle Failure of Rock Mass Due to Overstress (과지압으로 인한 암반의 점진적 취성파괴 과정의 수치해석적 연구)

  • Choi Young-Tae;Lee Dae-Hyuck;Lee Hee-Suk;Kim Jin-A;Lee Du-Hwa;You Kwang-Ho;Park Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.259-276
    • /
    • 2006
  • In rock mass subject to high in-situ stresses, the failure process of rock is dominated by the stress-induced fractures growing parallel to the excavation boundary. When the ratio of in situ stresses compared to rock strength is greater than a certain value, progressive brittle failure which is characterized by popping and spatting of rock debris occurs due to stress concentration. Traditional constitutive model like Mohr-Coulomb usually assume that the normal stress dependent frictional strength component and the cohesion strength component are constant, therefore modelling progressive brittle failure will be very difficult. In this study, a series of numerical analyses were conducted for surrounding rock mass near crude oil storage cavern using CW-FS model which was known to be efficient for modelling brittle failure and the results were compared with those of linear Mohr-Coulomb model. Further analyses were performed by varying plastic shear strain limits on cohesion and internal friction angle to find the proper values which yield the matching result with the observed failure in the oil storage caverns. The obtained results showed that CW-FS model could be a proper method to characterize essential behavior of progressive brittle failure in competent rock mass.

Stability Analysis of Compressed Air Storage Caverns in Rockmass (전력생산을 위한 암반내 압축공기저장공동의 안정성분석)

  • 신희순;신중호;최성웅;한일영;김정엽
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.287-294
    • /
    • 2002
  • CAES which is called as a compressed air energy storage was firstly developed at Huntorf, German in 1978. The capacity of that system was 290MW, and it can be treated as a first commercial power plant. CAES has a lot of merits, such as saving the unit price of power generation, averaging the peak demand, improvement of maintenance, enlarging the benefit of dynamic use. According to the literature survey, the unlined rock cavern should be proposed to be a reasonable storing style as a method of compressed air storage in Korea. We decided the hill of the Korea Institute of Geoscience and Mineral Resources as CAES site. If we construct the underground spaces in this site, the demand for electricity nearby Taejon should be considered. So we could determine the capacity of the power plant as a 350MW, This capacity needs a underground space of 200,000㎥, and we can conclude 4 parallel tunnels 550m deep from the surface through the numerical studies, Design parameters were achieved from 300m depth boring job and image processing job.

  • PDF

Aseismic analysis for large underground structure (대형 지하구조물의 내진해석)

  • Choi, Seung-Ho;Pam, Inn-Joon;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.163-174
    • /
    • 2009
  • The large underground structure under earthquake is affected more by soil dynamic characteristic and volume of structure than by structural dynamic characteristic itself. Therefore, it is the purpose of research that the aseismic analysis for caverns including various aseismic analysis factors (rock quality-Q value, soil dynamic characteristic, shape ratio $&$ volume, underground structural dynamic characteristic, and aseismic level) are applied by using the numerical analysis program (SAUS; seismic analysis of underground structures). The result of research is stated that maximum strain, maximum moment, and maximum shear are not sensitive with respect to shape ratio. However those values are sensitive with respect to Q value, volume of underground structure and aseismic level. Based on the results of this research, the assessment for the influence factors of aseismic analysis for large underground structure could be possible.

Groundwater Flow Characterization in the Vicinity of the Underground Caverns by Groundwater Level Changes (지하수위 변화에 따른 지하공동 주변의 지하수 유동특성 해석)

  • 강재기;양형식;김경수;김천수
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.465-475
    • /
    • 2003
  • Groundwater inflow into the caverns constructed in fractured rock mass was simulated by numerical modeling, NAPSAC (DFN, discrete fracture network model) and NAMMU (CPM, continuous porous media model), a finite-element software package for groundwater flow in 3D fractured media developed by AEA Technology, UK. The input parameters for modeling were determined on surface fracture survey, core logging and single hole hydraulic test data. In order to predict the groundwater inflow more accurately, the anisotropic hydraulic conductivity was considered. The anisotropic hydraulic conductivities were calculated from the fracture network properties. With a minor adjustment during model calibration, the numerical modeling is able to reproduce reasonably groundwater inflows into cavern and the travel length and times to the ground surface along the flow paths in the normal, dry and rainy seasons.

Evaluation of the Stability for Underground Tourist Cavern in an Abandoned Coal Mine (폐탄광 갱도를 활용한 갱도전시장의 안정성 평가)

  • Han Kong-Chang;Jeon Yang-Soo
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.425-431
    • /
    • 2005
  • A series of geotechnical surveys and in-situ tests were carried out to evaluate the stability of underground mine cave in an abandoned coal mine. After the closure of the mine, the underground mine drifts have been utilized for a tourist route since 1999. The dimension of the main cave is 5m width, 3m height and 230m length. The surrounding rock mass of the cave is consist of black shale, coal and limestone. Also, the main cave is intersected by two fault zone. Detailed field investigations including Rock Mass Rating(RMR), Geological Strength Index(GSI) and Q classification were performed to evaluate the stability of the main cave and to examine the necessity of reinforcement. Based on the results of rock mass classification and numerical analysis, suitable support design was recommended for the main cave. RMR and Q values of the rock masses were classified in the range of fair to good. According to the support categories proposed by Grimstad & Barton(1993), these classes fall in the reinforcement category of the Type 3 to Type 1. A Type 3 reinforcement category signifies systematic bolting and no support is necessary for the Type 1 case. From the result of numerical analysis, it was inferred that additional support on the several unstable blocks is required to ensure stability of the cave.

Preliminary Post-closure Safety Assessment of Disposal Options for Disused Sealed Radioactive Source (폐밀봉선원 처분방식별 폐쇄후 예비안전성평가)

  • Lee, Seunghee;Kim, Juyoul;Kim, Sukhoon
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.301-314
    • /
    • 2016
  • Disused Sealed Radioactive Sources (DSRSs) are stored temporally in the centralized storage facility of Korea Radioactive Waste Agency (KORAD) and planned to be disposed in the low- and intermediate-level radioactive waste (LILW) disposal facility in Gyeongju city. In this study, preliminary post-closure safety assessment was performed for DSRSs in order to draw up an optimum disposal plan. Two types of disposal options were considered, i.e. engineered vault type disposal and rock cavern type disposal which were planned to be constructed and operated respectively in LILW disposal facility in Gyeongju city. Assessment end-point was individual effective dose of critical group and calculated by using GoldSim code. In normal scenario, the maximum dose was estimated to be approximately $1{\times}10^{-7}mSv/yr$ for both disposal options. It meant that both options had sufficient safety margin when compared with regulatory limit (0.1 mSv/yr). Otherwise, in well scenario, the maximum dose exceeded regulatory limit of 1 mSv/yr in engineered vault type disposal and the exposure dose was mainly contributed by $^{226}Ra$, $^{210}Pb$ (daughter nuclide of $^{226}Ra$) and $^{237}Np$ (daughter nuclide of $^{241}Am$). For rock cavern type disposal, even though the peak dose satisfied regulatory limit, the exposure doses by $^{14}C$ and $^{237}Np$ were relatively high above 10% of regulatory limit. Therefore, it is necessary to exclude $^{14}C$, $^{226}Ra$ and $^{241}Am$ for two type of disposal options and additional management such as long-term storage and development of disposal container for those radionuclides should be performed before permanent disposal for conservative safety and security.

Analysis of Fire Scenarios and Evaluation of Risks that might Occur in Operation Stage of CAES Storage Cavern (CAES 저장 공동 운영단계에서 발생 가능한 리스크 평가 및 화재 시나리오 분석)

  • Yoon, Yong-Kyun;Ju, Eun-Hye;Seo, Saem-Mul;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2015
  • This study focuses on assessing risks which might occur in operation stage of CAES storage cavern and analyzing fire scenarios for the risk that have been assessed with highest risk level. Risks in operation stage were categorized into upper risk group and lower risk group. Components of upper risk group are technical risk, facility risk and natural disaster risk. Lower risk group is composed of 11 sub-risks. 20 experts were chosen to survey questionnaires. ANP model was applied to analyze the relative importance of 11 sub-risks. Results of risk analysis were compared with risk criterion to set risk priorities, and the highest risk was determined to be 'occurrence of the fire within the management opening'. Three fire scenarios were developed for the highest risk level and FDS (Fire dynamics Simulator) was used to analyze these scenarios. No. 3 scenario which air blows from tunnel into outside atmosphere represented that a rate of smoke spread was the fastest among three fire scenarios and a smoke descended most quickly below the limit line of breathing. Thus, No. 3 scenario turned out to be the most unfavorable condition when operating staffs were evacuated from access tunnel.

Analysis of a Groundwater Flow System in Fractured Rock Mass Using the Concept of Hydraulic Compartment (수리영역 개념을 적용한 단열암반의 지하수유동체계 해석)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.69-83
    • /
    • 2006
  • This study aims to evaluate a complex groundwater flow system around the underground oil storage caverns using the concept of hydraulic compartment. For the hydrogeological analysis, the hydraulic testing data, the evolution of groundwater levels in 28 surface monitoring boreholes and pressure variation of 95 horizontal and 63 vertical water curtain holes in the caverns were utilized. At the cavern level, the Hydraulic Conductor Domains(fracture zones) are characterized one local major fracture zone(NE-1)and two local fracture zones between the FZ-1 and FZ-2 fracture zones. The Hydraulic Rock Domain(rock mass) is divided into four compartments by the above local fracture zones. Two Hydraulic Rock Domains(A, B) around the FZ-2 zone have a relatively high initial groundwater pressures up to $15kg/cm^2$ and the differences between the upper and lower groundwater levels, measured from the monitoring holes equipped with double completion, are in the range of 10 and 40 m throughout the construction stage, indicating relatively good hydraulic connection between the near surface and bedrock groundwater systems. On the other hand, two Hydraulic Rock Domains(C, D) adjacent to the FZ-1, the groundwater levels in the upper and lower zones are shown a great difference in the maximum of 120 m and the high water levels in the upper groundwater system were not varied during the construction stage. This might be resulted from the very low hydraulic conductivity$(7.2X10^{-10}m/sec)$ in the zone, six times lower than that of Domain C, D. Groundwater recharge rates obtained from the numerical modeling are 2% of the annual mean precipitation(1,356mm/year) for 20 years.

Three-dimensional Stability Analysis of A Large Underground Hall in Mined Area (채굴적 주변 대형 지하광장의 3차원 안정성해석)

  • 송원경;한공창
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.441-446
    • /
    • 2000
  • Numerical analysis using FLAC3D has been conducted to estimate the stability of a large underground hall that is to be excavated in a mined area and constructed as an unit of a resort park. Numerical modelling is divided into two stages. The first stage is related to the analysis of the mechanical stability of the hall itself and the second to that of the influence of an adjacent mined cavity upon the hall. In the first stage, the stability of the hall is judged from the interpretation of numerical results in three respects: convergence of the unbalanced force of the model, occurrence of plastic zones and distribution of the displacement. In the second stage, variation of the stress state around the underground hall due to the existence of the cavity is compared to that in the case of the absence of the cavity. Through these analyses, it could be known that the large underground hall is not exposed to any mechanical problems and also not affected by the adjacent cavity.

  • PDF