• Title/Summary/Keyword: rock block

Search Result 211, Processing Time 0.028 seconds

Dynamic Frictional Behavior of Saw-cut Rock Joints Through Shaking Table Test (진동대 시험에 의한 편평한 암석 절리면의 동적 마찰거동 특성)

  • Park Byung-Ki;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.58-72
    • /
    • 2006
  • In recent years, not only the occurrences but the magnitude of earthquakes in Korea are on an increasing trend and other sources of dynamic events including large-scale construction, operation of hi띤-speed railway and explosives blasting have been increasing. Besides, the probability of exposure fir rock joints to free faces gets higher as the scale of rock mass structures becomes larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, a shaking table test system was set up and a series of dynamic test was carried out to examine the dynamic frictional behavior of rock joints. In addition, a computer program was developed, which calculated the acceleration and deformation of the sliding block theoretically based on Newmark sliding block procedure. The static friction angle was back-calculated by measuring yield acceleration at the onset of slide. The dynamic friction angle was estimated by closely approximating the experimental results to the program-simulated responses. As a result of dynamic testing, the static friction angle at the onset of slide as well as the dynamic friction angle during sliding were estimated to be significantly lower than tilt angle. The difference between the tilt angle and the static friction angle was $4.5\~8.2^{\circ}$ and the difference between the tilt angle and the dynamic friction angle was $2.0\~7.5^{\circ}$. The decreasing trend was influenced by the magnitude of the base acceleration and inclination angle. A DEM program was used to simulate the shaking table test and the result well simulated the experimental behavior. Friction angles obtained by shaking table test were significantly lower than basic friction angle by direct shear test.

The structural safety diagnosis of Dabo Pagoda of Bulkuk Temple using analyses of ultrasonic wave velocity (초음파 속도 분석을 통한 불국사 다보탑 구조 안전 진단)

  • Suh, Man-Cheol;Song, In-Sun;Choi, Hui-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.199-209
    • /
    • 2002
  • We have carried out a nondestructive close examination for the purpose of the structural safety diagnosis of the Dabo Pagoda of Bulkuk temple located in Kyungju, Kyungbuk Korea. For estimating the mechanical properties of each rock block of the pagoda, ultrasonic measurements were conducted at 641 points of 255 blocks. The P-wave velocity ranges from 584m/sec through 5,169m/sec, and averages 2,901m/sec Based on this result, the uniaxial compressive strength was estimated to be $93{\sim}1,943kg/cm^2\;with\;396kg/cm^2$ of average, and the index of weathering is $0.07{\sim}0.88$ with 0.43 of average, which means the moderate degree of weathering. The comparison of the rock strength of each block with the overburden acting on the block reveals that the rock blocks related to the structure of the pagoda are relatively sound for uniform stress, but it is highly possible for a concentrated stress to lead to a partial failure. We suggest a monitoring of cracks due to the concentrated stress. The parapets of 1st and 2nd floors composed of small rock pieces are severely weathered. However, this is not directly related to the structural safety of the pagoda.

  • PDF

Hydrogeological Performance Assessment for Underground Oil Storage Caverns (지하유류비축시설 수리안정성 평가방안)

  • 김천수;배대석;김경수;고용권;송승호
    • The Journal of Engineering Geology
    • /
    • v.7 no.3
    • /
    • pp.229-245
    • /
    • 1997
  • There are Common aspects between the underground oil storage cavern and the radioactive waste disposal facility. Both facilities use appropriately the intrinsic natural berrier characteristics of the rock mass and additionally the engineered barrier system for the long term safety. The geological structures and their hydrogeological characteristics in a faactured rock mass act a major role in the safety and performance of the underground oil storage facility through the design, construction and the operation stages. Because the fracture system distributed in a fractured rock block is complicated owing to their own geometrical and hydrogeological attributes, the hydrogeological perforrmrnce of the facility would depend mainly upon the understandings of their characteristics. This study reviews the uncertainties and key issues which have to be considered to analyse the groundwater flow system in a fractured rock mass and proposes the techniques applicable to characterize the hydrogeological parameter.

  • PDF

Slope Failure Index System Based on the Behavior Characteristics : SFi-system (거동 특성에 따른 사면 파괴 지수 시스템 : SFi-system)

  • 윤운상;정의진;최재원;김정환;김원영;김춘식
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.23-37
    • /
    • 2002
  • Failure of the cut slope is triggered by combination of internal and extemal failure factors. Internal failure factors are related to geological and geometrical conditions of slope itself, and natural and/or artificial loadings on slope can be the external failure factors. Influences of these failure factors show different intensity according to the ground condition and are controlled by behavior characters of the slope. In this study, the soil depth ratio(SR), block size ratio(BR) and rock strength are used as the criteria to divide ground condition based on behavior characteristics. Ground condition of the slope is divided into discontinuous jointed rock mass and continuos soil-like mass, highly fractured rock mass and massive rock mass by the criteria(SR and BR). The SFi-system is a rating system to determine the slope failure index(SFi) by analyzing internal and external factors based on classification of the ground condition. The results of the SFi-system application to the real cut slopes show close relationship between the SFi value and potential or dimension of the failure. Therefore, the SFi-system can be used as a useful tool to predict and analyze the characteristic of the slope failure.

Study on the Behavior of Toe of Drilled Shaft on the Rock Mass (암반에 근입된 말뚝의 선단 거동 특성에 관한 연구)

  • Park, Woan-Suh;Jeon, Suk-Won;Han, Yong-Hee;Choi, Se-Kun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.842-847
    • /
    • 2008
  • Despite of the increasing number of the application of the drilled shaft pile in construction site, most of the study of pile capacity has been centered side shear resistance. But it is common that the drilled shaft is socketed on the rock so as to use the bearing resistance, so prediction of the toe's movement and characteristic of the bearing capacity is important as the side shear resistance. Therefore the model tests were performed in order to study the characteristic of bearing capacity on rock mass. The material of the test blocks were the mortar which was mixed with sand, cement and water, and test block size was $240{\times}240{\times}240mm$. Load was pressed by the 45mm of diameter of miniaturized pile and plate jack and steal plate were used to the confined stress for representing the underground condition. The relation of load-displacement was measured in many different conditions of rock mass such as direction of discontinuities, spacing and strength, and q-w curves of the toe of the pile were verified in each condition.

  • PDF

Effect of Joint Stiffness on the Rock Block Behavior in the Distinct Element Analysis (개별요소해석에서 절리강성이 블록 거동에 미치는 영향)

  • Ryu, Chang-Ha;Choi, Byung-Hee
    • Explosives and Blasting
    • /
    • v.37 no.2
    • /
    • pp.14-21
    • /
    • 2019
  • Distinct element method is a powerful numerical tool for modelling the jointed rock masses. It is also a useful tool for modelling of later stage of blasting requiring large displacement. The distinct element method utilizes a rigid block idea in which the interacting force between distinct elements is calculated from contact displacement as elements penetrate slightly. The properties of joints defined as the boundaries of distinct elements are critical parameters to determine the block behavior, and affect the deformation and failure mode. However, regardless of real joint properties, joint stiffnesses have sometimes been selected without special concern just to prevent elements from penetrating too far into each other in some quasi-static problems. Depending on whether the main interest in the analysis is the prediction of the deformation with high precision, or the prediction of the block behaviour after failure, the input data such as joint stiffness may or may not have a significant effect on the results. The purpose of this study is to provide a sound understanding of the effect of the joint stiffness on the distinct element analysis results, and to help guide the selection of input data.

Merits and Limitations of the stereographic projection method for rock slope stability analysis-(Theory and applications with case histories)- (암반사면 안정성 평가를 위한 평사투영 해석법 적용창의 문제점)

  • 이수곤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.376-408
    • /
    • 1991
  • Recently stereographic projection method has widely been adopted in Korea as a simple but effective way of anlalysing the rock slope stability at the preliminary stage of site investigation. In practice, however, not a few cases have been noted where the method. even with the aid of computer programme, was unproperly applied due to lack of experience in the process of collecting geological data, sorting them out and assessing the potential instability of rock block thereform. This paper will briefly describe basic principles of stereographic projection method and present several instances to discuss its merits and limitations when it is applied to the geological conditions of Korea.

  • PDF

The Hydro-mechanical Analysis of Jointed Rock Mass Around the Underground Oil ac Gas Storage Cavern (원유 및 가스 지하저장시설에서 불연속면을 고려한 수리-역학적 상호작용에 관한 연구)

  • 장현익;이정인
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.291-303
    • /
    • 2002
  • In this study, three-dimensional block generation program was developed using the discontinuities input data for three-dimensional mechanical and hydro-mechanical analysis. Shi's two dimensional theory and program was extended to those of three-dimension and the deformations of blocks were calculated. The two-dimensional hyro-mechanical theory of DDA was also extended to three-dimensional theory and coupling deformation of the underground cavern was analyzed considering discontinuities.

Analysis of Problems in Road Cut-Slope Design Based on Practical Example (사례연구를 통한 도로 절개면 설계 문제점 분석과 대책안 제시)

  • 이기하;백영식;구호본;박혁진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.167-174
    • /
    • 2000
  • Profiles of discontinuities through scanline method were investigated for the analysis of rock slope stability. Lower hemispheric projection method was used to evaluate the geometric stability and failure potential of these discontinuities. Also, safety factor was evaluated for the discontinuities of failure potential using by limit equilibrium analysis. Then, displacements of rock block due to the discontinuities were displayed by using the program UDEC(Universal Distinct Element Code) which applied the Distinct Element Method. When we determine the cut-slope in design, the characteristics of discontinuities is not represented only by strength parameters of intact rock. Therefore it is more reasonable method in assuring stability that first, construction would be preceded by the cut-slope of preliminary design, and then, cut-slope would be redetermined by elaborate site investigation in processing construction.

  • PDF