• Title/Summary/Keyword: rock block

Search Result 211, Processing Time 0.022 seconds

Estimation of Volume Change and Fluid-Rock Ratio of Gouges in Quaternary Faults, the Eastern Blocks of the Ulsan Fault, Korea (울산단층 동부지역 제4기단층 비지대의 체적변화와 유체-암석비에 대한 고찰)

  • Chang Tae-Woo;Chae Yeon-Zoon;Choo Chang-Oh
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.349-363
    • /
    • 2005
  • Many Quaternary faults are recognized as thin gouge and narrow cataclastic zone juxtaposing the Bulguksa granite and Quaternary deposit bed in the eastern block of the Using Fault, Korea: Gaegok 1, Caegok 2, Singye, Madong Wonwonsa and Jinhyeon faults. This study was performed to calculate chemical change, volume change, silica loss and fluid-rock ratio taken place in gouge zones of these Quaternary faults using XRF, XRD, EPMA. The chemical compositions of fault rocks reveal that the fault gouges are depleted in $SiO_2,\;Na_2\;O,and\;K_2O$ and enriched in $Al_2O_3,\;Fe_2O_3,\;P_2O_5,\;MgO,\;MnO,\;CaO,\;and\;LOI(H_2O+CO_2)$ relative to protoliths. The fact that there is enrichment of relatively immobile elements and depletion of the more soluble elements in the fault gouges relative to protoliths can be explained by fluid-assisted volume loss of $56\%$ for Caegok 1 fault, $22\%$ for Caegok 2 fault,$34\%$, for Singye fault, $8\%$ for Madong fault, $2\%$ for the Wonwonsa fault and $53\%$ for the linhyeon fault. Madong fault and Wonwonsa fault where ratios of the volume change, silica loss and fluid-rock are low might have acted as a closed system for fluid activity, whereas Caegok 1 fault and Jinhyeon fault with high ratios in those factors be an open system. The volumetric fluid-rock ratios range $10^2\sim10^4$ for all faults, being highest in Caegok 1 fault and Jinhyeon fault whose fluid activity was most significant.

Estimation of 3-D Hydraulic Conductivity Tensor for a Cretaceous Granitic Rock Mass: A Case Study of the Gyeongsang Basin, Korea (경상분지 백악기 화강암 암반에 대한 삼차원 수리전도텐서 추정사례)

  • Um, Jeong-Gi;Lee, Dahye
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.41-57
    • /
    • 2022
  • A workflow is presented to estimate the size of a representative elementary volume and 3-D hydraulic conductivity tensor based on fluid flow analysis for a discrete fracture network (DFN). A case study is considered for a Cretaceous granitic rock mass at Gijang in Busan, Korea. The intensity and size of joints were calibrated using the first invariant of the fracture tensor for the 2-D DFN of the study area. Effective hydraulic apertures were obtained by analyzing the results of field packer tests. The representative elementary volume of the 2-D DFN was determined to be 20 m square by investigating the variations in the directional hydraulic conductivity for blocks of different sizes. The directional hydraulic conductivities calculated from the 2-D DFN exhibited strong anisotropy related to the hydraulic behavior of the study area. The 3-D hydraulic conductivity tensor for the fractured rock mass of the study area was estimated from the directional block conductivities of the 2-D DFN blocks generated for various directions in 3-D. The orientations of the principal components of the 3-D hydraulic conductivity tensor were found to be identical to those of delineated joint sets in the study area.

The Study on the Debris Slope Landform in the Southern Taebaek Mountains (태백산맥 남부산지의 암설사면지형)

  • Jeon, Young-Gweon
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.2
    • /
    • pp.77-98
    • /
    • 1993
  • The intent of this study is to analyze the characteristics of distribution, patter, and deposits of the exposed debris slope landform by aerial photography interpretation, measure-ment on the topographical maps and field surveys in the southern part Taebaek mountains. It also aims to research the arrangement types of mountain slope and the landform development of debris slopes in this area. In conclusion, main observations can be summed up as follows. 1. The distribution characteristics 1)From the viewpoint of bedrocks, the distribution density of talus is high in case of the bedrock with high density of joints, sheeting structures and hard rocks, but that of the block stream is high in case of intrusive rocks with the talus line. 2)From the viewpoint of bedrocks, the distribution density of talus is high in case of the bedrock with high density of joints, sheeting structures and hard rocks, but that of the block stream is high in case of inrtusive rocks with the talus line. 2) From the viewpoint of distribution altitude, talus is mainly distributed in the 301~500 meters part above the sea level, while the block stream is distributed in the 101~300 meters part. 3) From the viewpoint of slope oriention, the distribution density of talus on the slope facing the south(S, SE, SW) is a little higher than that of talus on the slope facing the north(N, NE, NW). 2. The Pattern Characteristics 1) The tongue-shaped type among the four types is the most in number. 2) The average length of talus slope is 99 meters, especially that of talus composed of hornfels or granodiorite is longer. Foth the former is easy to make free face; the latter is easdy to produce round stones. The average length of block stream slope is 145 meters, the longest of all is one km(granodiorite). 3) The gradient of talus slope is 20~45${^\circ}$, most of them 26-30${^\croc}$; but talus composed of intrusive rocks is gentle. 4) The slope pattern of talus shows concave slope, which means readjustment of constituent debris. Some of the block stream slope patterns show concave slope at the upper slope and the lower slope, but convex slope at the middle slope; others have uneven slope. 3. The deposit characteristics 1) The average length of constituent debris is 48~172 centimeters in diameter, the sorting of debris is not bad without matrix. That of block stream is longer than that of talus; this difference of debris average diameter is funda-mentally caused by joint space of bedrocks. 2) The shape of constituent debris in talus is mainly angular, but that of the debris composed of intrusive rocks is sub-angular. The shape of constituent debris in block stream is mainly sub-roundl. 3) IN case dof talus, debris diameter is generally increasing with downward slope, but some of them are disordered and the debris diameter of the sides are larger than that of the middle part on a landform surface. In block stream, debris diameter variation is perpendicularly disordered, and the debris diameter of the middle part is generally larger than that of the sides on a landform surface. 4)The long axis orientation of debris is a not bad at the lower part of the slope in talus (only 2 of 6 talus). In block stream(2 of 3), one is good in sorting; another is not bad. The researcher thinks that the latter was caused by the collapse of constituent debris. 5) Most debris were weathered and some are secondly weathered in situ, but talus composed of fresh debris is developing. 4. The landform development of debris slopes and the arrangement types of the mountain slope 1) The formation and development period of talus is divided into two periods. The first period is formation period of talus9the last glacial period), the second period is adjustment period(postglacial age). And that of block stream is divided into three periods: the first period is production period of blocks(tertiary, interglacial period), the second formation period of block stream(the last glacial period), and the third adjustment period of block stream(postglacialage). 2) The arrangement types of mountain slope are divided into six types in this research area, which are as follows. Type I; high level convex slope-free face-talus-block stream-alluvial surface Type II: high level convex slope-free face-talus-alluvial surface Type III: free face-talus-block stream-all-uvial surface Type IV: free face-talus-alluval surface Type V: talus-alluval surface Type VI: block stream-alluvial surface Particularly, type IV id\s basic type of all; others are modified ones.

  • PDF

Geology and Landscape of Mt. Mudeung Province Park, Korea (무등산 도립공원의 지질과 경관)

  • Ahn, Kun-Sang
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.109-121
    • /
    • 2010
  • Mt. Mudeung is located in Gwangju city, Damyang-Gun, Hwasun-Gun and its round form give us the mood of soft and rich. Its location is $126^{\circ}06'-127^{\circ}01'E$ and $35^{\circ}06'-35^{\circ}10'N$ and its highest peak is Cheonwang-bong with the height of 1,187 m. The Gwangju city is located in the West of Mt. Mudeng and the mountain range with a small basin in its East. The pavilion such as the Soswaewon, Songganjeong, Sigyongjeong are distributed along the stream in the north of Mt. Mudeung. The mountain is formed from the volcanic activity, Gwangju cauldron during the Cretaceous. The top part of Mt. Mudeung is composed of dark gray quartz-andesite and its K-Ar whole rock age is $48.1{\pm}1.7Ma$. The composition of the north area, where the Wonhyosa temple is located, is micrographic granite, whereas the composition of south area is rhyolite mainly. The main ridge of Mt. Mudeung runs from North, starting from the Bukbong, to south, passing Cheonwangbong, Jangbuljae and ending Anyangsan. Geologic feature of the mountain includes volcanic landform, mountaineous landform, and stream landform. The Seosukdae, Ipseokdae, Gyubongam, which are main ridges and formed from volcanic activity, are composed of mainly columnar joint. Saeinbong and Majipbong in the south-west are composed of mainly cliff and dome. The typical erosion landform of the mountain has three different types of the weathering-cave, each of which reflect the property of the original rock. Four different area of wide block stream, they makes the geological feature of spring-water, though its scale is small compared to that of water fall.

Studies on the Selection of Standard Revegetation Measures on the Highway Cut-slopes (고속도로(高速道路) 절개(切開)비탈면에서 녹화공법(綠化工法) 선정기준(選定基準) 설정(設定)에 관(關)한 연구(硏究))

  • Woo, Bo-Myeong;Kim, Kyung-Hoon
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.4
    • /
    • pp.476-488
    • /
    • 1997
  • The purpose of this study was to figure out the suitable field standards for revegetation measures on cut-slopes in consideration of the environmental factors. The field survey was conducted from 1995 to 1996 on highway cut-slopes. The results obtained could be summarized as follows; The major revegetation measures surveyed were 5 major measures as a whole in descending order of seed-spraying measures, block-sod pitching measures, latticed block pitching measures, hydro-seeding measures with seed-fertilizer-soil materials, and several netting measures on highway cut-slopes. According to the analysis of the environmental factors, the plant coverage was affected several major environmental factors which were soil factors(soil hardness, soil texture, soil and rock condition), and site factors(slope gradient, slope length). From a viewpoint of optimum selection, the major 3 factors(soil factors, slope gradient factors, slope length factors) should be considered for selection of revegetation measures on highway cut-slopes.

  • PDF

The Structural Safety Diagnosis of Three-Story Pagoda in Bulkuk Temple Using the Probability of Failure. (암석의 파괴 확률 분석을 통한 불국사 삼층석탑 구조 안전 진단)

  • Seo, Man-Cheol;Song, In-Seon;Choe, Hui-Su
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.57-69
    • /
    • 2001
  • We have carried out a nondestructive close examination for the purpose of the structural safety diagnosis of the Three-Story Pagoda(Seokga Pagoda) in Bulkuk temple in the city of Kyungju, Kyungbuk, Korea. Ultrasonic wave velocities were measured at 456 points of the pagoda comprising 44 blocks to estimate the mechanical properties of rock blocks constituting the pagoda. The measured velocities have the range of 1217 to 4403 m/sec with the average of 3227 m/sec. The empirical relationship between the ultrasonic velocity and the uniaxial compressive strength yielded the estimation of strength of each block, ranging from 134 to 844 kg/cm^2 and averaging 463 kg/cm^2. With an assumption that the strength of each block is described as a random variables having a normal distribution, we calculated the probability of failure of rock blocks of the pagoda. Our investigation revealed that the probability of the structural failure due to the weight of higher blocks is very low. However, the probability of partial failure around contact area is substantial, which is consistent with the appearance that edges and the corners of some blocks were broken off. The platform under the body of the pagoda appeared to be structurally weak as the probability of tensile failure of the lower platform is up to 18%, and diagonal fractures are shown where the probability of failure is high.

  • PDF

A Study on the Effect of Artificial Cutting Slot on the Fragmentation and Vibration Propagation in the Full-scaled Concrete Block Blasting (콘크리트 블록 발파 실험을 통한 인공 슬롯 자유면이 진동전파 및 파쇄효과에 미치는 영향에 관한 연구)

  • Oh, Se-Wook;Min, Gyeong-Jo;Park, Se-Woong;Park, Hoon;Noh, You-Song;Suk, Chul-Gi;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.692-705
    • /
    • 2018
  • Ground vibration is one of the remarkable issues in tunnel blasting. In recent studies, to improve the fragmentation with reduction of ground vibration in tunnel blasting, a vibration-controlled blasting method with artificial cutting slot near the center-cut holes has been suggested. This study examines the effect of the different arrangement of artificial cut-slot on the vibration reduction and fragmentation by performing the full-scaled concrete block blast experiments and the numerical simulations with 3D-DFPA. The results show that the existence of artificial slot contributes to the improvement of vibration reduction, blast fragmentation and the efficiency of the cutting slot blast. It can be explained that the artificial slot play a free surface role and should decrease the burden between the cut holes. Crater volumes of the blasted concrete blocks were measured by 3-dimensional digital image analysis and compared with the ideal standard crater volume which can be calculated by theoretical standard blast design method. As a result, the ratio of burden and hole diameter which should achieve the standard crater in the cut-hole blasting were suggested.

A Study on the Stratum Thickness Arrangement and Roof Bolt Support Design using Robust Design (강건설계를 이용한 층서두께 배열과 루프볼트 지보설계에 관한 연구)

  • Jang, Myoung Hwan
    • Tunnel and Underground Space
    • /
    • v.28 no.2
    • /
    • pp.142-155
    • /
    • 2018
  • The ${\bigcirc}{\bigcirc}$ mine has irregularly developed stratum around the ore body. The purpose of this study is to array irregular stratum thickness systematically for effective roof bolting and to implement a supporting system corresponding to it. The number of 81 cases combined with stratum thicknesses was limited to 9 cases by robust design. For each case, the load height which can act as a roof load was determined by the characteristics of stratum and RMR. The load range due to the load height is calculated assuming block shaped and arch shape. The support load of the roof bolt was considered as the average load of the two methods. Numerical analysis results of the support design showed that the cable bolt was more effective for the roof supporting fully grouted than the anchoring type. As a result of the construction, it was possible to control the roof, but all of the roof was gradually sinking downward due to the deformation of the side wall of the mine tunnel.

Research on Subject Business of Prior Review System on the Influence of Disasters - Based on Quarrying Industry - (사전재해영향성검토협의 대상사업에 관한 연구 - 채석사업을 중심으로 -)

  • Na, Young;Kim, Hwan-Gi
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.5
    • /
    • pp.319-325
    • /
    • 2007
  • Recently, since the risk on natural disasters is increasing due to abnormal weather such as the global warming, a need for a system on prior review on the influence of disasters has emerged in order to establish a solution by analyzing elements of disaster in advance. However, since the inherently destroying business namely the quarrying business is excluded from the range of subject business of Prior Review System on the influence of disasters, a correction for this is required. In order to actually explore how much risk it contains, actual outflow of soil and flood in the quarrying block where quarrying is being currently carried out was examined and the required undercurrent facility capacity which is also used as a grit chamber was investigated. In addition, by comparing the soil outflow of industrial complexes and golf courses which are current subject businesses of Prior Review on the Influence of Disasters and that of rock mountains relative risk level was examined. After investigation, it was found that the risk on occurrence of disasters was increased due to increase in outflow of soil and flood because of the change of land condition during and after development thus an adequate solution to decrease is required. In addition, after comparison with other business groups it was found that a significantly higher amount of soil is outflown in case of rock mountains thus it was analyzed that a solution to decrease is required. Therefore, a correction is immediately required in order to include quarrying business in the subject business of Prior Review System on the Influence of Disasters.

Numerical Study on Failure Mechanism of Tunnel Shotcrete Lining (터널 숏크리트 라이닝 파괴 메커니즘에 대한 수치해석적 고찰)

  • Shin, Hyusoung;Shin, Dongin;Bae, Gyujin;Kim, Donggyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.167-177
    • /
    • 2009
  • This study investigates a failure mechanism of a tunnel shotcrete lining with respect to a concentrated load due to blocky rock mass. First of all, it is carried out to survey relevant researches to shotcrete failures by literature reviews and to numerically re-investigate the failure modes of shotcrete lining given by previous researches. Through this study, the failure modes are relocated with the conditions which induce each failure mode newly proposed by this study. In addition to this, the arching shape of tunnel lining, which has not been considered in the previous research despite of inherent geometrical characteristics in tunnels, is taken into consideration in numerical investigation on lining failure in this study. As a result, it is shown that more simplified failure modes can be found on the tunnel boundary condition and the corresponding failure condition to each mode can be different from ones of the previous study due to a tunnel arching effect.

  • PDF