• Title/Summary/Keyword: robust to image translation

Search Result 38, Processing Time 0.022 seconds

Geometric Transform-Invariant Gait Recognition Using Modified Radon Transform (변형된 라돈 변환을 이용한 기하학적 형태 불변 보행인식)

  • Jang, Sang-Sik;Lee, Seung-Won;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.67-75
    • /
    • 2011
  • This paper presents a scale and rotation-invariant gait recognition method using R-transform, which is computed by projecting squared coefficients of Radon transform. Since R-transform is invariant to translation, rotation, and scaling, it particularly suitable for extracting object poses without camera calibration. Coefficients of R-transform are used to compute correlation, and the maximum correlation value determines the similarity between two gait images. The proposed method requires neither camera calibration nor geometric compensation, and as a result, it makes robust gait recognition possible without additional compensation for translation, rotation, and scaling.

Log-Polar Image Watermarking based on Invariant Centroid as Template (불변의 무게중심을 템플릿으로 이용한 대수-극 좌표계 영상 워터마킹 기법)

  • 김범수;유광훈;김우섭;곽동민;송영철;최재각;박길흠
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.3
    • /
    • pp.341-351
    • /
    • 2003
  • Digital image watermarking is the method that can protect the copyright of the image by embedding copyright information, which is called watermark. Watermarking must have robustness to intentional or unintentional data changing, called attack. The conventional watermarking schemes are robust to waveform attacks such as image compression, filtering etc. However, they are vulnerable to geometrical attacks such as rotation, scaling, translation, and cropping. Accordingly, this paper proposes new watermarking scheme that is robust to geometrical attacks by using invariant centroid. Invariant centroid is the gravity center of a central area in a gray scale image that remains unchanged even when the image is attacked by RST including cropping and proposed scheme uses invariant centroids of original and inverted image as the template. To make geometrically invariant domain, template and angle compensated Log -Polar Map(LPM) is used. Then Discrete Cosine Transform(DCT) is performed and the watermark is embedded into the DCT coefficients. Futhermore, to prevent a watermarked image from degrading due to interpolation during coordinate system conversion, only the image of the watermark signal is extracted and added to the original image. Experimental results show that the proposed scheme is especially robust to RST attacks including cropping.

CycleGAN Based Translation Method between Asphalt and Concrete Crack Images for Data Augmentation (데이터 증강을 위한 순환 생성적 적대 신경망 기반의 아스팔트와 콘크리트 균열 영상 간의 변환 기법)

  • Shim, Seungbo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.171-182
    • /
    • 2022
  • The safe use of a structure requires it to be maintained in an undamaged state. Thus, a typical factor that determines the safety of a structure is a crack in it. In addition, cracks are caused by various reasons, damage the structure in various ways, and exist in different shapes. Making matters worse, if these cracks are unattended, the risk of structural failure increases and proceeds to a catastrophe. Hence, recently, methods of checking structural damage using deep learning and computer vision technology have been introduced. These methods usually have the premise that there should be a large amount of training image data. However, the amount of training image data is always insufficient. Particularly, this insufficiency negatively affects the performance of deep learning crack detection algorithms. Hence, in this study, a method of augmenting crack image data based on the image translation technique was developed. In particular, this method obtained the crack image data for training a deep learning neural network model by transforming a specific case of a asphalt crack image into a concrete crack image or vice versa . Eventually, this method expected that a robust crack detection algorithm could be developed by increasing the diversity of its training data.

A Robust Content-Based Image Retrieval Technique for Distorted Query Image (변형된 질의 영상에 강한 내용 기반 영상 검색 기법)

  • 김익재;이제호;권용무;박상희
    • Journal of Broadcast Engineering
    • /
    • v.2 no.1
    • /
    • pp.74-83
    • /
    • 1997
  • We have proposed a composite feature measure which combines the color and shape features of an image for image retrieval. We improved the performance of retrieval based on the efficient color quantization using the Lloyd-Max quanizer and on the Histogram matrix matching method which considers the spatial correlation of quantized color group. We also supplemented the color information using shape information with the Improved Moment Invarlants. We have tested our technique on Image database consisting of 200 actual trademark images. Our experimental results showed that our approach improved the performance compared to the previous method under the various situations such as rotation images, translation images, noise added images, gamma corrected images and so on. The efficiency of retrieval is found to be very high and experimental results are

  • PDF

Object-Based Image Retrieval Using Color Adjacency and Clustering Method (컬러 인접성과 클러스터링 기법을 이용한 객체 기반 영상 검색)

  • Lee Hyung-Jin;Park Ki-Tae;Moon Young-Shik
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.31-38
    • /
    • 2005
  • This paper proposes an object-based image retrieval scheme using color adjacency and clustering method. Color adjacency features in boundary regions are utilized to extract candidate blocks of interest from image database and a clustering method is used to extract the regions of interest(ROI) from candidate blocks of interest. To measure the similarity between the query and database images, the histogram intersection technique is used. The color pair information used in the proposed method is robust against translation, rotation, and scaling. Consequently, experimental results have shown that the proposed scheme is superior to existing methods in terms of ANMRR.

Fine-Motion Estimation Using Ego/Exo-Cameras

  • Uhm, Taeyoung;Ryu, Minsoo;Park, Jong-Il
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.766-771
    • /
    • 2015
  • Robust motion estimation for human-computer interactions played an important role in a novel method of interaction with electronic devices. Existing pose estimation using a monocular camera employs either ego-motion or exo-motion, both of which are not sufficiently accurate for estimating fine motion due to the motion ambiguity of rotation and translation. This paper presents a hybrid vision-based pose estimation method for fine-motion estimation that is specifically capable of extracting human body motion accurately. The method uses an ego-camera attached to a point of interest and exo-cameras located in the immediate surroundings of the point of interest. The exo-cameras can easily track the exact position of the point of interest by triangulation. Once the position is given, the ego-camera can accurately obtain the point of interest's orientation. In this way, any ambiguity between rotation and translation is eliminated and the exact motion of a target point (that is, ego-camera) can then be obtained. The proposed method is expected to provide a practical solution for robustly estimating fine motion in a non-contact manner, such as in interactive games that are designed for special purposes (for example, remote rehabilitation care systems).

DiLO: Direct light detection and ranging odometry based on spherical range images for autonomous driving

  • Han, Seung-Jun;Kang, Jungyu;Min, Kyoung-Wook;Choi, Jungdan
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.603-616
    • /
    • 2021
  • Over the last few years, autonomous vehicles have progressed very rapidly. The odometry technique that estimates displacement from consecutive sensor inputs is an essential technique for autonomous driving. In this article, we propose a fast, robust, and accurate odometry technique. The proposed technique is light detection and ranging (LiDAR)-based direct odometry, which uses a spherical range image (SRI) that projects a three-dimensional point cloud onto a two-dimensional spherical image plane. Direct odometry is developed in a vision-based method, and a fast execution speed can be expected. However, applying LiDAR data is difficult because of the sparsity. To solve this problem, we propose an SRI generation method and mathematical analysis, two key point sampling methods using SRI to increase precision and robustness, and a fast optimization method. The proposed technique was tested with the KITTI dataset and real environments. Evaluation results yielded a translation error of 0.69%, a rotation error of 0.0031°/m in the KITTI training dataset, and an execution time of 17 ms. The results demonstrated high precision comparable with state-of-the-art and remarkably higher speed than conventional techniques.

Sequence Images Registration by using KLT Feature Detection and Tracking (KLT특징점 검출 및 추적에 의한 비디오영상등록)

  • Ochirbat, Sukhee;Park, Sang-Eon;Shin, Sung-Woong;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.2
    • /
    • pp.49-56
    • /
    • 2008
  • Image registration is one of the critical techniques of image mosaic which has many applications such as generating panoramas, video monitoring, image rendering and reconstruction, etc. The fundamental tasks of image registration are point features extraction and tracking which take much computation time. KLT(Kanade-Lucas-Tomasi) feature tracker has proposed for extracting and tracking features through image sequences. The aim of this study is to demonstrate the usage of effective and robust KLT feature detector and tracker for an image registration using the sequence image frames captured by UAV video camera. In result, by using iterative implementation of the KLT tracker, the features extracted from the first frame of image sequences could be successfully tracked through all frames. The process of feature tracking in the various frames with rotation, translation and small scaling could be improved by a careful choice of the process condition and KLT pyramid implementation.

  • PDF

Image Watermarking Robust to Rotation, Scale and Translation Distortion (RST변환에 강인한 이미지 워터마킹 방법)

  • Choo, Hyon-Gon;Lim, Sam;Kim, Whoi-Yul
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.209-212
    • /
    • 2001
  • 오늘날, 디지털 워터마크에 대하여 기하학적 변환에 대한 강인성이 요구되고 있다. 본 논문에서는 회전, 이동 및 크기변화에 강인한 워터마킹 방법을 제안한다. 영상의 푸리에 변환 계수를 이용하여 이동에 대한 강인한 속성을 가지도록 하며, 입력 마스크의 상호 관계가 회전, 크기 변화에 강인하도록 워터마크 마스크를 생성한 후 영상에 삽입한다. 삽입된 워터마크의 검출은 영상의 주파수 영역의 radial projection 에 대한 워터마크 신호의 상관도를 이용하여 검출한다. 실험을 통하여 제안된 방법이 여러 가지 기하학적 변환에 강인함을 보여준다.

  • PDF

Detecton of OPtical Flow Using Cellular Nonlinear Neural Networks (셀룰라 비선형 회로 구조를 이용한 optical flow 검출)

  • Son, Hong-Rak;Kim, Hyong-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3053-3055
    • /
    • 2000
  • The Cellular Nonlinear Networks structure for Distance Transform (DT) and the robust optical flow detection algorithm based on the DT are proposed. The proposed algorithm is for detecting the optical flows on the trajectories only of the feature points. The translation lengths and the directions of feature movements are detected on the trajectories of feature points on which Distance Transform Field is developed. The robustness caused from the use of the Distance Transform and the easiness of hardware implementation with local analog circuits are the properties of the proposed structure, To verify the performance of the proposed structure and the algorithm, simulation has been done about zooming image.

  • PDF