• Title/Summary/Keyword: robust test

Search Result 735, Processing Time 0.023 seconds

A Study on Motion Control and Kinematics Analysis of Articulated Manipulator Attachment for Excavator (포크레인용 다관절 매니퓰레이터 어태치먼트 운동학 해석 및 모션제어)

  • Kim, Hee-Jin;Kim, Sang-Hyun;Jang, Ki-Won;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.807-819
    • /
    • 2019
  • In this paper, it is proposed a new approach to motion control and kinematics analysis of articulated manipulator attachment with five degree of freedom for excavator. Unlike the well-established theory for the control of linear systems, there is little general control theory relatively for a robust control of nonlinear systems. The control technique is essential for providing a stable and robust performance for application of articulated manipulator control. The proposed control algorithm is one of robust control methods based on error informations of the position and velocity error informations using stability analysis of dynamic model. Through simulation test, the proposed control scheme is illustrated to be a efficient control technique for real-time control.

Robust Internal-loop Compensation of Pump Velocity Controller for Precise Force Control of an Electro-hydrostatic Actuator (EHA의 정밀 힘제어를 위한 펌프 속도 제어기의 강인 내부루프 보상)

  • Kim, Jong-Hyeok;Hong, Yeh-Sun
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • Force-controlled electro-hydrostatic actuators have to exhibit high backdrivability, to quickly compensate for force control errors caused by externally disturbed rod movement. To obtain high backdrivability, the servomotor for driving the hydraulic pump, should rotate exactly to such a revolution to compensate for force control errors, compressing or decompressing cylinder chambers. In this study, we proposed a modified velocity control structure, including a robust internal-loop compensator (RIC)-based velocity controller, for the servomotor to improve backdrivability of a force-controlled EHA. Performance improvement was confirmed experimentally, wherein sinusoidal velocity disturbance was applied to the force-controlled EHA, with constant reference input. Its dynamic force control errors reduced effectively, with the proposed control scheme, compared to test results with a conventional motordriver, for motor velocity control.

Change point analysis in Bitcoin return series : a robust approach

  • Song, Junmo;Kang, Jiwon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.511-520
    • /
    • 2021
  • Over the last decade, Bitcoin has attracted a great deal of public interest and Bitcoin market has grown rapidly. One of the main characteristics of the market is that it often undergoes some events or incidents that cause outlying observations. To obtain reliable results in the statistical analysis of Bitcoin data, these outlying observations need to be carefully treated. In this study, we are interested in change point analysis for Bitcoin return series having such outlying observations. Since these outlying observations can affect change point analysis undesirably, we use a robust test for parameter change to locate change points. We report some significant change points that are not detected by the existing tests and demonstrate that the model allowing for parameter changes is better fitted to the data. Finally, we show that the model with parameter change can improve the forecasting performance of Value-at-Risk.

$H_{\infty}$ Control of Seeker Scan-Loop using LSDP (LSDP를 이용한 탐색기 주사루프의 $H_{\infty}$ 제어)

  • Lee, Ho-Pyeong;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.78-86
    • /
    • 1995
  • $H_{\infty}$ Controller of seeker scan-loop is designed using LSDP proposed by McFarlane. The performance and robustness of $H_{\infty}$ controller are analyzed using robustness theorems by Lehtomaki and compared with those of the LQG/LTR controller. Especially, structured singular value .mu. -test of Doyle is used to evaluate robust performance of seeker scan-loop. It is demonstated that seeker scan-loop by $H_{\infty}$ controller is very robust to model uncertainties described by additive and multiplicative perturbations.

  • PDF

Applying the Bi-level HMM for Robust Voice-activity Detection

  • Hwang, Yongwon;Jeong, Mun-Ho;Oh, Sang-Rok;Kim, Il-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.373-377
    • /
    • 2017
  • This paper presents a voice-activity detection (VAD) method for sound sequences with various SNRs. For real-time VAD applications, it is inadequate to employ a post-processing for the removal of burst clippings from the VAD output decision. To tackle this problem, building on the bi-level hidden Markov model, for which a state layer is inserted into a typical hidden Markov model (HMM), we formulated a robust method for VAD not requiring any additional post-processing. In the method, a forward-inference-ratio test was devised to detect the speech endpoints and Mel-frequency cepstral coefficients (MFCC) were used as the features. Our experiment results show that, regarding different SNRs, the performance of the proposed approach is more outstanding than those of the conventional methods.

Energy Feature Normalization for Robust Speech Recognition in Noisy Environments

  • Lee, Yoon-Jae;Ko, Han-Seok
    • Speech Sciences
    • /
    • v.13 no.1
    • /
    • pp.129-139
    • /
    • 2006
  • In this paper, we propose two effective energy feature normalization methods for robust speech recognition in noisy environments. In the first method, we estimate the noise energy and remove it from the noisy speech energy. In the second method, we propose a modified algorithm for the Log-energy Dynamic Range Normalization (ERN) method. In the ERN method, the log energy of the training data in a clean environment is transformed into the log energy in noisy environments. If the minimum log energy of the test data is outside of a pre-defined range, the log energy of the test data is also transformed. Since the ERN method has several weaknesses, we propose a modified transform scheme designed to reduce the residual mismatch that it produces. In the evaluation conducted on the Aurora2.0 database, we obtained a significant performance improvement.

  • PDF

Design of Occupant Protection Equipment for Passenger Car Using Taguchi Method (다구찌법을 이용한 자동차 승객 보호 장구의 설계)

  • 이권희;주원식;이주영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.299-304
    • /
    • 2003
  • The design of an occupant protection equipment has been considered as the important process in developing a new car since the crash performance plays an important role on the market. The cost is increased when an unexpected real test is carried out in the proto-design stage. Thus, the exact prediction of a crash performance can reduce the number of full-car test. In this research, the robust design of an airbag system considering the frontal crash is suggested to predict the more reliable responses. On the contrary, most existing researches do not consider the uncertainties. The uncertainties treated in this research are the tolerances of the vent hole, the time to fire and the length of a strap in airbag and the tolerance of the load limiter load in seat belt. The Taguchi method is utilized to determine the robust optimum of each parameter

  • PDF

Design of a Robust Pedometer for Personal Navigation System against Ground Variation and Walking Behavior (지면 변화 및 보행 형태에 강인한 개인 항법 시스템용 걸음수 검출기 설계)

  • Jang, Han-Jin;Kim, Jeong-Won;Hwang, Dong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.9
    • /
    • pp.420-422
    • /
    • 2006
  • This paper proposes a new method to count the number of steps for personal navigation systems. The proposed method resolves the mis-counting problem caused by the variation of the ground and walking behavior. To this end, a 2-axis accelerometer is utilized and a reliable step counting algorithm is developed. Experimental test was carried out to show the effectiveness of the proposed method. Test results show that the proposed method gives a robust performance for several types of ground and walking behavior.

Robust Nonlinear Multivariable Control for the Hard Nonlinear System with Structured Uncertainty (구조화된 불확실성을 갖는 하드 비선형 시스템에 대한 강인한 다변수 비선형 제어)

  • 한성익;김종식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.128-141
    • /
    • 1998
  • We propose the robust nonlinear controller design methodology for the multivariable system which has hard nonlinearities (Coulomb friction, dead-zone, etc) and the structured real parameter uncertainty. The hard nonlinearity can be linearized by the RIDF technique and structured real parameter uncertainty can be modelled as the sense of Peterson-Hollot's quadratic Lyapunov bound. For this system, we apply the robust QLQG/H$_{\infty}$ control and then can obtain four Riccati equations. Because of the system's nonlinearity, however, one Riccati equation contains the nonlinear correction term that is very difficult to solve numerically, In order to treat this problem, using some transformations to Riccati equations, the nonlinear correction term can be eliminated. Then, only two Riccati equations need to design a controller. Finally, the robust nonlinear controller is synthesized via IRIDF techniques. To test this proposed control method, we consider the direct-drive robot manipulator system that has Coulomb frictions and varying inertia.

  • PDF

Robust Adaptive Voltage Control of Electric Generators for Ships (선박용 발전기 시스템의 강인 적응형 전압 제어)

  • Cho, Hyun Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.326-331
    • /
    • 2016
  • This paper presents a novel robust adaptive AC8B exciter system against synchronous generators for ships. A PID (proportional integral derivative) control framework, which is a part of the AC8B exciter system, is simply composed of nominal and auxiliary control configurations. For selecting these proper parameter values, the former is conventionally chosen based on the experience and knowledge of experts, and the latter is optimally estimated via a neural networks optimization procedure. Additionally, we propose an online parameter learning-based auxiliary control to practically cope with deterioration of control performance owing to uncertainty in electric generator systems. Such a control mechanism ensures the robustness and adaptability of an AC8B exciter to enhance control performance in real-time implementation. We carried out simulation experiments to test the reliability of the proposed robust adaptive AC8B exciter system and prove its superiority through a comparative study in which a conventional PID control-based AC8B exciter system is similarly applied to our simulation experiments under the same simulation scenarios.