• Title/Summary/Keyword: robust saturation controller

Search Result 42, Processing Time 0.019 seconds

Robust Control of Multi-Echelon Production-Distribution Systems with Limited Decision Policy (II)- Numerical Simulation-

  • Jeong, Sang-Hwa;Oh, Yong-Hun;Kim, Sang-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.380-392
    • /
    • 2000
  • A typical production-distribution system consist of three main echelons representing the retailer, distributors, and a factory each with an on-site warehouse. The system is sufficiently general and realistic to represent many industrial situations. However, decision functions and parameters have been selected to apply particularly to the production and distribution of consumer durables. The flows included in the model are materials, orders, and those information flows needed to support the material and order-rate decisions. In this work, a realistic production-distribution system has been used as a basic model, which consists of three sectors: retailer, distributor, and factory. That system is a nonlinear 25th-order continuous system interconnected between the echelons. Using a modern control algorithm, a typical multi-echelon production-distribution system using a dynamic controller is numerically simulated in the nominal plant and in the perturbed plant when the piecewise constant manufacturing decision is limited by a factory manufacturing upper-limit due to capital equipment, manpower, and factory lotsize.

  • PDF

A New Robust Continuos VSCS by Saturation Function for Uncertain Nonlinear Plants (불확실 비선형 플랜트를 위한 포화 함수에 의한 새로운 강인한 연속 가변구조제어시스템)

  • Lee, Jung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.30-39
    • /
    • 2011
  • In this note, a systematic design of a new robust nonlinear continuous variable structure control system(VSCS) based on the modified state dependent nonlinear form is presented for the control of uncertain affine nonlinear systems with mismatched uncertainties and matched disturbance. After an affine uncertain nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a new robust nonlinear VSCS is presented. The uncertainty of the nonlinear system function is separated into the tow parts, i.e., state dependent term and state independent term for extension of target plants. To be linear in the closed loop resultant dynamics and in order to easily satisfy the existence condition of the sliding mode, the transformed linear sliding surface is applied. A corresponding control input is proposed to satisfy the closed loop exponential stability and the existence condition of the sliding mode on the linear transformed sliding surface, which will be investigated in Theorem 1. For practical application, the discontinuity of the control input as the inherent property of the VSS is improved dramatically. Through a design example and simulation studies, the usefulness of the proposed controller is verified.