• Title/Summary/Keyword: robust performance.

Search Result 3,675, Processing Time 0.032 seconds

A comparison of imputation methods using nonlinear models (비선형 모델을 이용한 결측 대체 방법 비교)

  • Kim, Hyein;Song, Juwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.4
    • /
    • pp.543-559
    • /
    • 2019
  • Data often include missing values due to various reasons. If the missing data mechanism is not MCAR, analysis based on fully observed cases may an estimation cause bias and decrease the precision of the estimate since partially observed cases are excluded. Especially when data include many variables, missing values cause more serious problems. Many imputation techniques are suggested to overcome this difficulty. However, imputation methods using parametric models may not fit well with real data which do not satisfy model assumptions. In this study, we review imputation methods using nonlinear models such as kernel, resampling, and spline methods which are robust on model assumptions. In addition, we suggest utilizing imputation classes to improve imputation accuracy or adding random errors to correctly estimate the variance of the estimates in nonlinear imputation models. Performances of imputation methods using nonlinear models are compared under various simulated data settings. Simulation results indicate that the performances of imputation methods are different as data settings change. However, imputation based on the kernel regression or the penalized spline performs better in most situations. Utilizing imputation classes or adding random errors improves the performance of imputation methods using nonlinear models.

A Deep Learning-based Hand Gesture Recognition Robust to External Environments (외부 환경에 강인한 딥러닝 기반 손 제스처 인식)

  • Oh, Dong-Han;Lee, Byeong-Hee;Kim, Tae-Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.5
    • /
    • pp.31-39
    • /
    • 2018
  • Recently, there has been active studies to provide a user-friendly interface in a virtual reality environment by recognizing user hand gestures based on deep learning. However, most studies use separate sensors to obtain hand information or go through pre-process for efficient learning. It also fails to take into account changes in the external environment, such as changes in lighting or some of its hands being obscured. This paper proposes a hand gesture recognition method based on deep learning that is strong in external environments without the need for pre-process of RGB images obtained from general webcam. In this paper we improve the VGGNet and the GoogLeNet structures and compared the performance of each structure. The VGGNet and the GoogLeNet structures presented in this paper showed a recognition rate of 93.88% and 93.75%, respectively, based on data containing dim, partially obscured, or partially out-of-sight hand images. In terms of memory and speed, the GoogLeNet used about 3 times less memory than the VGGNet, and its processing speed was 10 times better. The results of this paper can be processed in real-time and used as a hand gesture interface in various areas such as games, education, and medical services in a virtual reality environment.

Preparation and Characterization of Nanofiltration Membrane for Recycling Alcoholic Organic Solvent (알코올성 유기용매 재활용을 위한 나노여과막의 제조와 특성평가)

  • Kim, Seong Heon;Im, Kwang Seop;Kim, Ji Hyeon;Koh, Hyung Chul;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.228-240
    • /
    • 2021
  • The organic solvent robust polybenzimidazole (PBI) membranes were prepared as organic solvent nanofiltration (OSN) membrane for the recycling of alcoholic solvents using non-solvent induced phase separation with different dope solution concentration and coagulant composition of water/ethanol mixtures to control the membrane morphology and permeation performance. Investigation on crosslinking of polybenzimidazole indicated that the membrane crosslinked with dibromoxylene (DBX) had enough mechanical strength and solvent resistance to be applied as a OSN membranes. The crosslinked PBI membrane prepared by more than 20wt% dope concentration coagulated in water showed a rejection of > 90% to Congo Red (MW of 696.66 g/mol) while pure ethanol permeances was more than 22.5 LMH/bar at 5 bar. Investigation on coagulant composition indicated that ethanol permeance through crosslinked PBI OSN membrane increased with increasing of ethanol concentration in water/ethanol mixture coagulants.

Face Identification Using a Near-Infrared Camera in a Nonrestrictive In-Vehicle Environment (적외선 카메라를 이용한 비제약적 환경에서의 얼굴 인증)

  • Ki, Min Song;Choi, Yeong Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.99-108
    • /
    • 2021
  • There are unrestricted conditions on the driver's face inside the vehicle, such as changes in lighting, partial occlusion and various changes in the driver's condition. In this paper, we propose a face identification system in an unrestricted vehicle environment. The proposed method uses a near-infrared (NIR) camera to minimize the changes in facial images that occur according to the illumination changes inside and outside the vehicle. In order to process a face exposed to extreme light, the normal face image is changed to a simulated overexposed image using mean and variance for training. Thus, facial classifiers are simultaneously generated under both normal and extreme illumination conditions. Our method identifies a face by detecting facial landmarks and aggregating the confidence score of each landmark for the final decision. In particular, the performance improvement is the highest in the class where the driver wears glasses or sunglasses, owing to the robustness to partial occlusions by recognizing each landmark. We can recognize the driver by using the scores of remaining visible landmarks. We also propose a novel robust rejection and a new evaluation method, which considers the relations between registered and unregistered drivers. The experimental results on our dataset, PolyU and ORL datasets demonstrate the effectiveness of the proposed method.

Makeup transfer by applying a loss function based on facial segmentation combining edge with color information (에지와 컬러 정보를 결합한 안면 분할 기반의 손실 함수를 적용한 메이크업 변환)

  • Lim, So-hyun;Chun, Jun-chul
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.35-43
    • /
    • 2022
  • Makeup is the most common way to improve a person's appearance. However, since makeup styles are very diverse, there are many time and cost problems for an individual to apply makeup directly to himself/herself.. Accordingly, the need for makeup automation is increasing. Makeup transfer is being studied for makeup automation. Makeup transfer is a field of applying makeup style to a face image without makeup. Makeup transfer can be divided into a traditional image processing-based method and a deep learning-based method. In particular, in deep learning-based methods, many studies based on Generative Adversarial Networks have been performed. However, both methods have disadvantages in that the resulting image is unnatural, the result of makeup conversion is not clear, and it is smeared or heavily influenced by the makeup style face image. In order to express the clear boundary of makeup and to alleviate the influence of makeup style facial images, this study divides the makeup area and calculates the loss function using HoG (Histogram of Gradient). HoG is a method of extracting image features through the size and directionality of edges present in the image. Through this, we propose a makeup transfer network that performs robust learning on edges.By comparing the image generated through the proposed model with the image generated through BeautyGAN used as the base model, it was confirmed that the performance of the model proposed in this study was superior, and the method of using facial information that can be additionally presented as a future study.

CycleGAN Based Translation Method between Asphalt and Concrete Crack Images for Data Augmentation (데이터 증강을 위한 순환 생성적 적대 신경망 기반의 아스팔트와 콘크리트 균열 영상 간의 변환 기법)

  • Shim, Seungbo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.171-182
    • /
    • 2022
  • The safe use of a structure requires it to be maintained in an undamaged state. Thus, a typical factor that determines the safety of a structure is a crack in it. In addition, cracks are caused by various reasons, damage the structure in various ways, and exist in different shapes. Making matters worse, if these cracks are unattended, the risk of structural failure increases and proceeds to a catastrophe. Hence, recently, methods of checking structural damage using deep learning and computer vision technology have been introduced. These methods usually have the premise that there should be a large amount of training image data. However, the amount of training image data is always insufficient. Particularly, this insufficiency negatively affects the performance of deep learning crack detection algorithms. Hence, in this study, a method of augmenting crack image data based on the image translation technique was developed. In particular, this method obtained the crack image data for training a deep learning neural network model by transforming a specific case of a asphalt crack image into a concrete crack image or vice versa . Eventually, this method expected that a robust crack detection algorithm could be developed by increasing the diversity of its training data.

Evaluating SR-Based Reinforcement Learning Algorithm Under the Highly Uncertain Decision Task (불확실성이 높은 의사결정 환경에서 SR 기반 강화학습 알고리즘의 성능 분석)

  • Kim, So Hyeon;Lee, Jee Hang
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.331-338
    • /
    • 2022
  • Successor representation (SR) is a model of human reinforcement learning (RL) mimicking the underlying mechanism of hippocampal cells constructing cognitive maps. SR utilizes these learned features to adaptively respond to the frequent reward changes. In this paper, we evaluated the performance of SR under the context where changes in latent variables of environments trigger the reward structure changes. For a benchmark test, we adopted SR-Dyna, an integration of SR into goal-driven Dyna RL algorithm in the 2-stage Markov Decision Task (MDT) in which we can intentionally manipulate the latent variables - state transition uncertainty and goal-condition. To precisely investigate the characteristics of SR, we conducted the experiments while controlling each latent variable that affects the changes in reward structure. Evaluation results showed that SR-Dyna could learn to respond to the reward changes in relation to the changes in latent variables, but could not learn rapidly in that situation. This brings about the necessity to build more robust RL models that can rapidly learn to respond to the frequent changes in the environment in which latent variables and reward structure change at the same time.

Analyzing the impact on logistics outsourcing success for Ugandan food processing firms through third-party logistics service providers' capabilities (제3자 물류 서비스공급자의 역량을 통한 우간다 식품 가공업체의 물류 아웃소싱 성공에 대한 영향 분석)

  • Alioni, Christopher;Park, Byungin
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.4
    • /
    • pp.45-64
    • /
    • 2022
  • Due to the recent and rapid globalization, logistics outsourcing has expanded globally and is seen as a means of creating a robust logistics system. However, many businesses continue to have difficulties with their logistics outsourcing contracts, which compels them to reinstate the logistics function for internal management. This study aims to investigate how organizational capabilities of logistics service providers (LSPs), notably flexibility, integration, innovation, and technological capabilities, impact on the logistics outsourcing success in Ugandan food processing firms. Using a structured questionnaire survey, cross-sectional data collected from 211 food processing firms in Kampala - Uganda were analyzed by partial least squares-structural equation modeling (PLS-SEM) using SmartPLS 3.3.7 software to examine the theorized relationships. The study findings revealed that whereas the technological and innovation capabilities positively and significantly influence logistics outsourcing success, the effects of flexibility and integration capabilities were insignificant. Additionally, the importance-performance map analysis (IPMA) reveals that the technological capability is a priority capability, followed by the innovation capability if logistics outsourcing success is to be achieved. Conversely, flexibility and integration capabilities are of low priority.

Water Level Prediction on the Golok River Utilizing Machine Learning Technique to Evaluate Flood Situations

  • Pheeranat Dornpunya;Watanasak Supaking;Hanisah Musor;Oom Thaisawasdi;Wasukree Sae-tia;Theethut Khwankeerati;Watcharaporn Soyjumpa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.31-31
    • /
    • 2023
  • During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.

  • PDF

Infection Control in Pulmonary Function Laboratories in Domestic Hospitals (국내 의료기관의 폐기능검사실에서 감염관리 실태조사)

  • Nan-Hee LEE;Suhng Wook KIM
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.3
    • /
    • pp.143-150
    • /
    • 2023
  • The global outbreak of COVID-19 has underscored the pressing need for robust infection control practices in pulmonary function laboratories (PFL). However, the existing guidelines and regulatory frameworks provided by relevant authorities in the country have revealed certain deficiencies in effectively addressing this significant public health crisis. This study surveyed the infection control regulations, disposable item usage, ventilation facilities, spatial separation, and the configuration of entrance doors in 51 domestic hospital facilities from Oct 1, 2021, to Nov 2, 2021. The survey findings revealed that while there was a relatively satisfactory adherence to airborne, droplet, and contact precautions with adequate awareness and utilization of personal protective equipment, the environmental disinfection practices exhibited a suboptimal performance rate of 39.22% per patient. Depending on the specific survey domains, substantial variations were observed in the utilization of disposable items (81.05%), ventilation systems (45.75%), dedicated testing spaces (80.39%), separation of administrative areas (15.69%), and the installation of automated doors (19.61%). This study not only highlights the paramount importance of infection control in PFLs within domestic medical institutions but also provides foundational data for developing and enhancing standardized guidelines that align with international benchmarks for infection control in these settings.