Journal of the Institute of Electronics Engineers of Korea SP
/
v.44
no.1
/
pp.94-104
/
2007
Iris recognition is biometric technology which uses a unique iris pattern of user in order to identify person. In the captured iris image by conventional iris recognition camera, it is often the case with eyelid occlusion, which covers iris information. The eyelids are unnecessary information that causes bad recognition performance, so this paper proposes robust algorithm in order to detect eyelid. This research has following three advantages compared to previous works. First, we remove the detected eyelash and specular reflection by linear interpolation method because they act as noise factors when locating eyelid. Second, we detect the candidate points of eyelid by using mask in limited eyelid searching area, which is determined by searching the cross position of eyelid and the outer boundary of iris. And our proposed algorithm detects eyelid by using parabolic hough transform based on the detected candidate points. Third, there have been many researches to detect eyelid, but they did not consider the rotation of eyelid in an iris image. Whereas, we consider the rotation factor in parabolic hough transform to overcome such problem. We tested our algorithm with CASIA Database. As the experimental results, the detection accuracy were 90.82% and 96.47% in case of detecting upper and lower eyelid, respectively.
Journal of the Institute of Electronics and Information Engineers
/
v.53
no.10
/
pp.15-23
/
2016
To support the telematics and infotainment services, vehicle-to-everything (V2X) communication requires a robust and reliable network. To do this, the 3rd Generation Partnership Project (3GPP) has recently developed V2X communication. For reliable communication, accurate channel estimation should be done. However, because vehicle speed is very fast, radio channel is rapidly changed with time. Therefore, it is difficult to accurately estimate the channel. In this paper, we propose the new linear minimum mean square error (LMMSE) channel interpolation scheme based on the Long Term Evolution (LTE) sidelink system in vehicle-to-vehicle (V2V) environments. In our proposed reduced decision error (RDE) channel estimation scheme, LMMSE channel estimation is applied in the pilot symbol, and then in the data symbol, smoothing and LMMSE channel interpolation scheme is applied. After that, time and frequency domain averaging are applied to obtain the whole channel frequency response. In addition, the LMMSE equalizer of the receiver side can reduce the error propagation due to the decision error. Therefore, it is possible to detect the reliable data. Analysis and simulation results demonstrate that the proposed scheme outperforms currently conventional schemes in normalized mean square error (NMSE) and bit error rate (BER).
Journal of the Korean Institute of Intelligent Systems
/
v.24
no.2
/
pp.173-178
/
2014
In this study, we introduce ASM-based face recognition classifier and its design methodology with the aid of 2-dimensional 2-directional hybird preprocessing algorithm. Since the image of face recognition is easily affected by external environments, ASM(active shape model) as image preprocessing algorithm is used to resolve such problem. In particular, ASM is used widely for the purpose of feature extraction for human face. After extracting face image area by using ASM, the dimensionality of the extracted face image data is reduced by using $(2D)^2$hybrid preprocessing algorithm based on LDA and PCA. Face image data through preprocessing algorithm is used as input data for the design of the proposed polynomials based radial basis function neural network. Unlike as the case in existing neural networks, the proposed pattern classifier has the characteristics of a robust neural network and it is also superior from the view point of predictive ability as well as ability to resolve the problem of multi-dimensionality. The essential design parameters (the number of row eigenvectors, column eigenvectors, and clusters, and fuzzification coefficient) of the classifier are optimized by means of ABC(artificial bee colony) algorithm. The performance of the proposed classifier is quantified through yale and AT&T dataset widely used in the face recognition.
Journal of the Korean Institute of Intelligent Systems
/
v.26
no.5
/
pp.423-431
/
2016
In general LPR(License Plate Recognition) in outdoor image is not so simple differently from in the image captured from manmade environment, because of geometric shape distortion and large illumination changes. this paper proposes three techniques for LPR in outdoor images captured from CCTV. At first, a serially connected multi-stage Adaboost LP detector is proposed, in which different complementary features are used. In the proposed detector the performance is increased by the Haar-like Adaboost LP detector consecutively connected to the MB-LBP based one in serial manner. In addition the technique is proposed that makes image processing easy by the prior determination of LP type, after correction of geometric distortion of LP image. The technique is more efficient than the processing the whole LP image without knowledge of LP type in that we can take the appropriate color to gray conversion, accurate location for separation of text/numeric character sub-images, and proper parameter selection for image processing. In the proposed technique we use DBN(Deep Belief Network) to achieve a robust character recognition against stroke loss and geometric distortion like slant due to the incomplete image processing.
This paper describes a music information retrieval system which uses humming as the key for retrieval Humming is an easy way for the user to input a melody. However, there are several problems with humming that degrade the retrieval of information. One problem is a human factor. Sometimes people do not sing accurately, especially if they are inexperienced or unaccompanied. Another problem arises from signal processing. Therefore, a music information retrieval method should be sufficiently robust to surmount various humming errors and signal processing problems. A retrieval system has to extract pitch from the user's humming. However pitch extraction is not perfect. It often captures half or double pitches. even if the extraction algorithms take the continuity of the pitch into account. Considering these problems. we propose a system that takes multiple pitch candidates into account. In addition to the frequencies of the pitch candidates. the confidence measures obtained from their powers are taken into consideration as well. We also propose the use of an algorithm with three dimensions that is an extension of the conventional DP algorithm, so that multiple pitch candidates can be treated. Moreover in the proposed algorithm. DP paths are changed dynamically to take deltaPitches and IOIratios of input and reference notes into account in order to treat notes being split or unified. We carried out an evaluation experiment to compare the proposed system with a conventional system. From the experiment. the proposed method gave better retrieval performance than the conventional system.
In this paper, a new automatic speech recognition (ASR) was proposed where ultrasonic doppler signals were used, instead of conventional speech signals. The proposed method has the advantages over the conventional speech/non-speech-based ASR including robustness against acoustic noises and user comfortability associated with usage of the non-contact sensor. In the method proposed herein, 40 kHz ultrasonic signal was radiated toward to the mouth and the reflected ultrasonic signals were then received. Frequency shift caused by the doppler effects was used to implement ASR. The proposed method employed multi-channel ultrasonic signals acquired from the various locations, which is different from the previous method where single channel ultrasonic signal was employed. The PCA(Principal Component Analysis) coefficients were used as the features of ASR in which hidden markov model (HMM) with left-right model was adopted. To verify the feasibility of the proposed ASR, the speech recognition experiment was carried out the 60 Korean isolated words obtained from the six speakers. Moreover, the experiment results showed that the overall word recognition rates were comparable with the conventional speech-based ASR methods and the performance of the proposed method was superior to the conventional signal channel ASR method. Especially, the average recognition rate of 90 % was maintained under the noise environments.
KSCE Journal of Civil and Environmental Engineering Research
/
v.38
no.2
/
pp.249-259
/
2018
More than half of annual rainfall occurs in summer season in Korea due to its climate condition and geographical location. A frequency analysis is mostly adopted for designing hydraulic structure under the such concentrated rainfall condition. Among the various distributions, univariate Gumbel distribution has been routinely used for rainfall frequency analysis in Korea. However, the distributional changes in extreme rainfall have been globally observed including Korea. More specifically, the univariate Gumbel distribution based rainfall frequency analysis is often fail to describe multimodal behaviors which are mainly influenced by distinct climate conditions during the wet season. In this context, we purposed a Gumbel mixture distribution based rainfall frequency analysis with a Bayesian framework, and further the results were compared to that of the univariate. It was found that the proposed model showed better performance in describing underlying distributions, leading to the lower Bayesian information criterion (BIC) values. The mixed Gumbel distribution was more robust for describing the upper tail of the distribution which playes a crucial role in estimating more reliable estimates of design rainfall uncertainty occurred by peak of upper tail than single Gumbel distribution. Therefore, it can be concluded that the mixed Gumbel distribution is more compatible for extreme frequency analysis rainfall data with two or more peaks on its distribution.
In network delivery of compressed video, packets may be lost if the channel is unreliable like Internet. Such losses tend to of cur in burst like continuous bit-stream error. In this paper, we propose an effective error-concealment approach to which an error resilient video encoding approach is applied against burst errors and which reduces a complexity of error concealment at the decoder using data hiding. To improve the performance of error concealment, a temporal and spatial error resilient video encoding approach at encoder is developed to be robust against burst errors. For spatial area of error concealment, block shuffling scheme is introduced to isolate erroneous blocks caused by packet losses. For temporal area of error concealment, we embed parity bits in content data for motion vectors between intra frames or continuous inter frames and recovery loss packet with it at decoder after transmission While error concealment is performed on error blocks of video data at decoder, it is computationally costly to interpolate error video block using neighboring information. So, in this paper, a set of feature are extracted at the encoder and embedded imperceptibly into the original media. If some part of the media data is damaged during transmission, the embedded features can be extracted and used for recovery of lost data with bi-direction interpolation. The use of data hiding leads to reduced complexity at the decoder. Experimental results suggest that our approach can achieve a reasonable quality for packet loss up to 30% over a wide range of video materials.
Major deficiencies of current automation scheme including various robots for bioproduction include the lack of task adaptability and real time processing, low job performance for diverse tasks, and the lack of robustness of take results, high system cost, failure of the credit from the operator, and so on. This paper proposed a scheme that could solve the current limitation of task abilities of conventional computer controlled automatic system. The proposed scheme is the man-machine hybrid automation via tele-operation which can handle various bioproduction processes. And it was classified into two categories. One category was the efficient task sharing between operator and CCM(computer controlled machine). The other was the efficient interface between operator and CCM. To realize the proposed concept, task of the object identification and extraction of 3D coordinate of an object was selected. 3D coordinate information was obtained from camera calibration using camera as a measurement device. Two stereo images were obtained by moving a camera certain distance in horizontal direction normal to focal axis and by acquiring two images at different locations. Transformation matrix for camera calibration was obtained via least square error approach using specified 6 known pairs of data points in 2D image and 3D world space. 3D world coordinate was obtained from two sets of image pixel coordinates of both camera images with calibrated transformation matrix. As an interface system between operator and CCM, a touch pad screen mounted on the monitor and remotely captured imaging system were used. Object indication was done by the operator’s finger touch to the captured image using the touch pad screen. A certain size of local image processing area was specified after the touch was made. And image processing was performed with the specified local area to extract desired features of the object. An MS Windows based interface software was developed using Visual C++6.0. The software was developed with four modules such as remote image acquisiton module, task command module, local image processing module and 3D coordinate extraction module. Proposed scheme shoed the feasibility of real time processing, robust and precise object identification, and adaptability of various job and environments though selected sample tasks.
Deep neural networks(DNN), which are used as approximation functions in reinforcement learning (RN), theoretically can be attributed to realistic results. In empirical benchmark works, time difference learning (TD) shows better results than Monte-Carlo learning (MC). However, among some previous works show that MC is better than TD when the reward is very rare or delayed. Also, another recent research shows when the information observed by the agent from the environment is partial on complex control works, it indicates that the MC prediction is superior to the TD-based methods. Most of these environments can be regarded as 5-step Q-learning or 20-step Q-learning, where the experiment continues without long roll-outs for alleviating reduce performance degradation. In other words, for networks with a noise, a representative network that is regardless of the controlled roll-outs, it is better to learn MC, which is robust to noisy rewards than TD, or almost identical to MC. These studies provide a break with that TD is better than MC. These recent research results show that the way combining MC and TD is better than the theoretical one. Therefore, in this study, based on the results shown in previous studies, we attempt to exploit a random balance with a mixture of TD and MC in RL without any complicated formulas by rewards used in those studies do. Compared to the DQN using the MC and TD random mixture and the well-known DQN using only the TD-based learning, we demonstrate that a well-performed TD learning are also granted special favor of the mixture of TD and MC through an experiments in OpenAI Gym.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.