• Title/Summary/Keyword: robust performance.

Search Result 3,675, Processing Time 0.035 seconds

Enhanced WMAN System based on Region and Time Partitioning D-TDD OFDM Architecture (영역/시간 세분화 D-TDD OFDM 구조에 기반한 새로운 WMAN 시스템 구조 설계)

  • Kim, Mee-Ran;Cheong, Hee-Jeong;Kim, Nak-Myeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.68-77
    • /
    • 2006
  • In accommodating the asymmetric traffic for future wireless multimedia services, the dynamic time division duplexing (D-TDD) scheme is considered as one of the key solutions. With the D-TDD mode, however, the inter-BS and inter-MS interference is inevitable during the cross time slot (CTS) period, and this interference seriously degrades the system performance. To mitigate such interference, we propose a region and time partitioning D-TDD architecture for OFDM systems. Each time slot in the CTS period is split into several minislots, and then each cell is divided into as many regions as the number of minislots per time slot. We then assign the minislots only to the users in its predefined corresponding region. On top of such architecture which inherently separates the interfering entities farther from each other, we design a robust time slot allocation scheme so that the inter-cell interference can be minimized. By the computer simulation, it has been verified that the proposed scheme outperforms the conventional time slot allocation methods in both the outage probability and the bandwidth efficiency.

A Depth-based Disocclusion Filling Method for Virtual Viewpoint Image Synthesis (가상 시점 영상 합성을 위한 깊이 기반 가려짐 영역 메움법)

  • Ahn, Il-Koo;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.48-60
    • /
    • 2011
  • Nowadays, the 3D community is actively researching on 3D imaging and free-viewpoint video (FVV). The free-viewpoint rendering in multi-view video, virtually move through the scenes in order to create different viewpoints, has become a popular topic in 3D research that can lead to various applications. However, there are restrictions of cost-effectiveness and occupying large bandwidth in video transmission. An alternative to solve this problem is to generate virtual views using a single texture image and a corresponding depth image. A critical issue on generating virtual views is that the regions occluded by the foreground (FG) objects in the original views may become visible in the synthesized views. Filling this disocclusions (holes) in a visually plausible manner determines the quality of synthesis results. In this paper, a new approach for handling disocclusions using depth based inpainting algorithm in synthesized views is presented. Patch based non-parametric texture synthesis which shows excellent performance has two critical elements: determining where to fill first and determining what patch to be copied. In this work, a noise-robust filling priority using the structure tensor of Hessian matrix is proposed. Moreover, a patch matching algorithm excluding foreground region using depth map and considering epipolar line is proposed. Superiority of the proposed method over the existing methods is proved by comparing the experimental results.

Estimation and Weighting of Sub-band Reliability for Multi-band Speech Recognition (다중대역 음성인식을 위한 부대역 신뢰도의 추정 및 가중)

  • 조훈영;지상문;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.552-558
    • /
    • 2002
  • Recently, based on the human speech recognition (HSR) model of Fletcher, the multi-band speech recognition has been intensively studied by many researchers. As a new automatic speech recognition (ASR) technique, the multi-band speech recognition splits the frequency domain into several sub-bands and recognizes each sub-band independently. The likelihood scores of sub-bands are weighted according to reliabilities of sub-bands and re-combined to make a final decision. This approach is known to be robust under noisy environments. When the noise is stationary a sub-band SNR can be estimated using the noise information in non-speech interval. However, if the noise is non-stationary it is not feasible to obtain the sub-band SNR. This paper proposes the inverse sub-band distance (ISD) weighting, where a distance of each sub-band is calculated by a stochastic matching of input feature vectors and hidden Markov models. The inverse distance is used as a sub-band weight. Experiments on 1500∼1800㎐ band-limited white noise and classical guitar sound revealed that the proposed method could represent the sub-band reliability effectively and improve the performance under both stationary and non-stationary band-limited noise environments.

The Study on the Verification of Speaker Change using GMM-UBM based KL distance (GMM-UBM 기반 KL 거리를 활용한 화자변화 검증에 대한 연구)

  • Cho, Joon-Beom;Lee, Ji-eun;Lee, Kyong-Rok
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.4
    • /
    • pp.71-77
    • /
    • 2016
  • In this paper, we proposed a verification of speaker change utilizing the KL distance based on GMM-UBM to improve the performance of conventional BIC based Speaker Change Detection(SCD). We have verified Conventional BIC-based SCD using KL-distance based SCD which is robust against difference of information volume than BIC-based SCD. And we have applied GMM-UBM to compensate asymmetric information volume. Conventional BIC-based SCD was composed of two steps. Step 1, to detect the Speaker Change Candidate Point(SCCP). SCCP is positive local maximum point of dissimilarity d. Step 2, to determine the Speaker Change Point(SCP). If ${\Delta}BIC$ of SCCP is positive, it decides to SCP. We examined verification of SCP using GMM-UBM based KL distance D. If the value of D on each SCP is higher than threshold, we accepted that point to the final SCP. In the experimental condition MDR(Missed Detection Rate) is 0, FAR(False Alarm Rate) when the threshold value of 0.028 has been improved to 60.7%.

A study on the performance of three methods of estimation in SEM under conditions of misspecification and small sample sizes (모형명세화 오류와 소표본에서 구조방정식모형 모수추정 방법들 비교: 모수추정 정확도와 이론모형 검정력을 중심으로)

  • Seo, Dong Gi;Jung, Sunho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1153-1165
    • /
    • 2017
  • Structural equation modeling (SEM) is a basic tool for testing theories in a variety of disciplines. A maximum likelihood (ML) method for parameter estimation is by far the most widely used in SEM. Alternatively, two-stage least squares (2SLS) estimator has been proposed as a more robust procedure to address model misspecification. A regularized extension of 2SLS, two-stage ridge least squares (2SRLS) has recently been introduced as an alternative to ML to effectively handle the small-sample-size issue. However, it is unclear whether and when misspecification and small sample sizes may pose problems in theory testing with 2SLS, 2SRLS, and ML. The purpose of this article is to evaluate the three estimation methods in terms of inferences errors as well as parameter recovery under two experimental conditions. We find that: 1) when the model is misspecified, 2SRLS tends to recover parameters better than the other two estimation methods; 2) Regardless of specification errors, 2SRLS produces small or relatively acceptable Type II error rates for the small sample sizes.

Error Resilient Video Coding Techniques Using Multiple Description Scheme (다중 표현을 이용한 에러에 강인한 동영상 부호화 방법)

  • 김일구;조남익
    • Journal of Broadcast Engineering
    • /
    • v.9 no.1
    • /
    • pp.17-31
    • /
    • 2004
  • This paper proposes an algorithm for the robust transmission of video in error Prone environment using multiple description codingby optimal split of DCT coefficients and rate-distortionoptimization framework. In MDC, a source signal is split Into several coded streams, which is called descriptions, and each description is transmitted to the decoder through different channel. Between descriptions, structured correlations are introduced at the encoder, and the decoder exploits this correlation to reconstruct the original signal even if some descriptions are missing. It has been shown that the MDC is more resilient than the singe description coding(SDC) against severe packet loss ratecondition. But the excessive redundancy in MDC, i.e., the correlation between the descriptions, degrades the RD performance under low PLR condition. To overcome this Problem of MDC, we propose a hybrid MDC method that controls the SDC/MDC switching according to channel condition. For example, the SDC is used for coding efficiency at low PLR condition and the MDC is used for the error resilience at high PLR condition. To control the SDC/MDC switching in the optimal way, RD optimization framework are used. Lagrange optimization technique minimizes the RD-based cost function, D+M, where R is the actually coded bit rate and D is the estimated distortion. The recursive optimal pet-pixel estimatetechnique is adopted to estimate accurate the decoder distortion. Experimental results show that the proposed optimal split of DCT coefficients and SD/MD switching algorithm is more effective than the conventional MU algorithms in low PLR conditions as well as In high PLR condition.

13.56 MHz Wireless Power Transfer System Using Loop Antennas with Tunable Impedance Matching Circuit (가변 임피던스 정합 회로를 갖는 루프 안테나를 이용한 13.56 MHz 무선 전력 전송 시스템)

  • Won, Do-Hyun;Kim, Hee-Seung;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.519-527
    • /
    • 2010
  • In this paper, we proposed a 13.56 MHz wireless power transfer system using loop antennas with tunable impedance matching circuits. In general, a wireless power transfer system shows an impedance mismatching due to a reflected impedance, because a coupling coefficient is varied with respect to separation distance between two resonating antennas. The proposed system can compensate the effect of this impedance mismatch owing to tunable impedance matching circuits using varactor diodes. Therefore, transmission efficiency is enhanced, moreover, the center frequency of the system is not changed, regardless of separation distance between two antennas. In order to demonstrate the performance of the proposed system, a wireless power transfer system with tunable impedance matching circuits is designed and implemented, which has a pair of loop antennas with a dimension of $30\;cm{\times}30\;cm$ cm. The input return loss, coupling coefficient, efficiency, and input impedance variation with respect to a distance between loop antennas were measured. From measured results, the proposed system shows enhanced performances than the case of the general fixed $50\;{\Omega}$ impedance matching circuits. Therefore, we verified that the proposed wireless power transfer system using the proposed impedance matching scheme will be able to ensure robust operation even when the separation distance of antennas is varied.

Robust and Blind Watermarking for DIBR Using a Depth Variation Map (깊이변화지도를 이용한 DIBR 공격의 강인성 블라인드 워터마킹)

  • Lee, Yong-Seok;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.845-860
    • /
    • 2016
  • This paper proposes a digital watermarking scheme to protect the ownership of the freeview 2D or 3D image such that the viewer watches the image(s) by rendering a arbitrary viewpoint image(s) with the received texture image and its depth image. In this case a viewpoint change attack essentially occurs, even if it is not malicious. In addition some malicious attacks should be considered, which is to remove the embedded watermark information. In this paper, we generate a depth variation map (DVM) to find the locations less sensitive to the viewpoint change. For each LH subband after 3-level 2DDWT for the texture image, the watermarking locations are found by referring the DVM. The method to embed a watermark bit to a pixel uses a linear quantizer whose quantization step is determined according to the energy of the subband. To extract the watermark information, all the possible candidates are first extracted from the attacked image by considering the correlation to the original watermark information. For each bit position, the final extracted bit is determined by a statistical treatment with all the candidates corresponding that position. The proposed method is experimented with various test images for the various attacks and compared to the previous methods to show that the proposed one has excellent performance.

Effective Morphological Layer Segmentation Based on Edge Information for Screen Image Coding (스크린 이미지 부호화를 위한 에지 정보 기반의 효과적인 형태학적 레이어 분할)

  • Park, Sang-Hyo;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.38-47
    • /
    • 2013
  • An image coding based on MRC model, a kind of multi-layer image model, first segments a screen image into foreground, mask, and background layers, and then compresses each layer using a codec that is suitable to the layer. The mask layer defines the position of foreground regions such as textual and graphical contents. The colour signal of the foreground (background) region is saved in the foreground (background) layer. The mask layer which contains the segmentation result of foreground and background regions is of importance since its accuracy directly affects the overall coding performance of the codec. This paper proposes a new layer segmentation algorithm for the MRC based image coding. The proposed method extracts text pixels from the background using morphological top hat filtering. The application of white or black top hat transformation to local blocks is controlled by the information of relative brightness of text compared to the background. In the proposed method, the boundary information of text that is extracted from the edge map of the block is used for the robust decision on the relative brightness of text. Simulation results show that the proposed method is superior to the conventional methods.

Fracture Flow of Radionuclides in Unsaturated Conditions at LILW Disposal Facility (불포화 암반 파쇄대를 통한 핵종 이동)

  • Kim, Won-Seok;Kim, Jungjin;Ahn, Jinmo;Nam, Seongsik;Um, Wooyong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.465-471
    • /
    • 2015
  • Adsorption experiments for radionuclides such as $^3H$, $^{90}Sr$ and $^{99}Tc$ were conducted using fractured rock collected in unsaturated zone. The released radionuclide through artificial barrier from the near surface repository can be transported by the flow of rainfall or pore water through fractures in unsaturated zone and reach to groundwater flow. Therefore, it is important to investigate transport behavior (retardation) of radionuclides through fractured rock for the safety assessment and long-term performance of repository. Fractured rock samples were collected and characterized by X-ray microtomography (XMT) analysis, which can be used to develop a more robust unsaturated fracture transport model. When fracture-filling materials are exist, distribution coefficient of $^{90}Sr$ is higher than without fracture-filling materials. In this study, batch sorption distribution coefficient ($K_d$) of radionuclide was determined and used to increase our understanding of radionuclide retardtion through fracture-filling materials.