• Title/Summary/Keyword: robust optimal

Search Result 793, Processing Time 0.02 seconds

Optimization of Biotransformation Process for Sodium Gluconate Production by Aspergillus niger (Aspergillus niger를 이용한 글루콘산 나트륨 생산 생변환 공정의 최적화)

  • 박부수;조병관;이상윤;임승환;김동일;김병기
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.309-314
    • /
    • 1999
  • In order to produce high concentration of sodium gluconate, optimization of the fermentation conditions, such as glucose concentration, inoculum size, dissolved oxygen concentration and glucose feeding method, was examined. When the glucose concentration was maintained in the range of 30∼50 g/L during the batch fermentation, glucose conversion yield and productivity were 92.2% and 6.0 g/L/hr, respectively. In the case of the low concentration below 30 g/L, the yield decreased by about 25%. As the inoculum size increased above 20%(w/v), lag phase was shortened but the productivity decreased. The dissolved oxygen level of 60∼70% was shown to be the threshold point for 75% of increase in the productivity of sodium gluconate. Finally, optimal glucose feeding rate was determined using various feeding methods such as exponential feeding, feeding based on the average glucose consumption rate and was determined using various feeding methods such as exponential feeding, feeding based on the average glucose consumption rate and on the oxygen uptake rate and etc. Our result shows that glucose feeding, based on the oxygen uptake rate is a very simple, efficient and robust method, especially when oxygen is consumed as a substrate for the bioconversion. Using the above glucose feeding strategy under the optimized condition, 255 g/L of sodium gluconate concentration, 12 g/L/hr of productivity and 95% of glucose conversion yield were achieved with A. niger ACM53.

  • PDF

Deterimination of an Optimal Time Point for Analyzing Transcriptional Activity and Analysis of Transcripts of Avian Influenza Virus H9N2 in Cultured Cell (배양세포에서 Semi-quantitative RT-PCR에 의한 조류인플루엔자 H9N2의 전사활성 분석 최적 시기 결정 및 전사체 분석)

  • Na, Gi-Youn;Lee, Young-Min;Byun, Sung-June;Jeon, Ik-Soo;Park, Jong-Hyeon;Cho, In-Soo;Joo, Yi-Seok;Lee, Yun-Jung;Kwon, Jun-Hun;Koo, Yong-Bum
    • Korean Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.286-290
    • /
    • 2009
  • The transcription of mRNA of avian influenza virus is regulated temporally during infection. Therefore, the measurement of transcript level in host cells should be performed before viral release from host cells because errors can occur in the analysis of the transcript levels if the viruses released from the infected cells re-infect cells. In this study, the timing of viral release was determined by measuring the level of viral RNA from viruses released from H9N2-infected chicken fibroblast cell line UMNSAH/DF-1 by semi-quantitative RT-PCR. The viral genomic RNA was isolated together with mouse total RNA which was added to the collected medium as carrier to monitor the viral RNA recovery and to use its GAPDH as an internal control for normalizing reverse transcription reaction as well as PCR reaction. It was found that viral release of H9N2 in the chicken fibroblast cell line UMNSAH/DF-1 took between 16 and 20 h after infection. We measured all 8 viral mRNA levels. Of the 8 transcripts, 7 species of viral mRNAs (each encoding HA, NA, PB1, PB2, NP, M, NS, respectively) except PA mRNA showed robust amplification, indicating these mRNA can be used as targets for amplification to measure transcript levels. These results altogether suggest that the method in this study can be used for screening antiviral materials against viral RNA polymerase as a therapeutic target.

A Study on the Image Registration Algorithms for the Accurate Application of Multimodality Image in Radiation Treatment Planning (방사선치료 계획시 다중영상 활용의 정확도 향상을 위한 영상정합 알고리즘 분석)

  • 송주영;이형구;최보영;윤세철;서태석
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.209-217
    • /
    • 2002
  • There have been many studies on the application of the reciprocal advantages of multimodality image to define accurate target volume in the Process of radiation treatment planning. For the proper use of the multimodality images, the registration works between different modality images should be performed in advance. In this study, we selected chamfer matching method and mutual information method as most popular methods in recent image registration studies considering the registration accuracy and clinical practicality. And the two registration methods were analyzed to deduce the optimal registration method according to the characteristics of images. Lung phantom of which multimodality images could be acquired was fabricated and CT, MRI and SPECT images of the phantom were used in this study. We developed the registration program which can perform the two registration methods properly and analyzed the registration results which were produced by the developed program in many different images' conditions. Although the overall accuracy of the registration in both chamfer matching method and mutual information method was acceptable, the registration errors in SPECT images which had lower resolution and in degraded images of which data were removed in some part were increased when chamfer matching method was applied. Especially in the case of degraded reference image, chamfer matching methods produce relatively large errors compared with mutual information method. Mutual information method can be estimated as more robust registration method than chamfer matching method in this study because it did not need the prerequisite works, the extraction of accurate contour points, and it produced more accurate registration results consistently regardless of the images' characteristics. The analysis of the registration methods in this study can be expected to provide useful information to the utilization of multimodality images in delineating target volume for radiation treatment planning and in many other clinical applications.

  • PDF