• 제목/요약/키워드: robust optimal

검색결과 793건 처리시간 0.024초

명제화된 어트리뷰트 택소노미를 이용하는 나이브 베이스 학습 알고리즘 (Propositionalized Attribute Taxonomy Guided Naive Bayes Learning Algorithm)

  • 강대기;차경환
    • 한국정보통신학회논문지
    • /
    • 제12권12호
    • /
    • pp.2357-2364
    • /
    • 2008
  • 본 논문에서는 명제화된 어트리뷰트 택소노미를 이용하여 간결하고 강건한 분류기를 생성하는 문제를 고려한다. 이 문제를 해결하기 위해 명제화된 어트리뷰트 택소노미(Propositionalized Attribute Taxonomy)를 이용하는 나이브 베이스 학습 알고리즘(Naive Bayes Learner)인 PAT-NBL을 소개한다. PAT-NBL은 명제화된 어트리뷰트들의 택소노미를 선험 지식으로 이용하여 간결하고 정확한 분류기를 귀납적으로 학습하는 알고리즘이다. PAT-NBL은 주어진 택소노미에서 지역적으로 최적의 컷(cut)을 찾아내기 위해 하향식 탐색과 상향식 탐색을 사용한다. 찾아낸 최적의 컷은 명제화된 어트리뷰트 택소노미와 데이터로부터 그에 상응하는 인스턴스 공간(instance space)을 구성 할 수 있게 해준다. University of California-Irvine (UCI) 저장소의 기계학습 벤치마크 데이터에 대한 실험 결과를 보면, 제안된 알고리즘이 표준적인 나이브 베이스 학습 알고리즘에 의해 만들어진 분류기들과 비교해 볼 때, 가끔은 보다 간결하고 더 정확한 분류기를 생성해 낸다는 사실을 알 수 있었다.

Modified Pharmacokinetic/Pharmacodynamic model for electrically activated silver-titanium implant system

  • Tan, Zhuo;Orndorff, Paul E.;Shirwaiker, Rohan A.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제2권3호
    • /
    • pp.127-141
    • /
    • 2015
  • Silver-based systems activated by low intensity direct current continue to be investigated as an alternative antimicrobial for infection prophylaxis and treatment. However there has been limited research on the quantitative characterization of the antimicrobial efficacy of such systems. The objective of this study was to develop a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model providing the quantitative relationship between the critical system parameters and the degree of antimicrobial efficacy. First, time-kill curves were experimentally established for a strain of Staphylococcus aureus in a nutrientrich fluid environment over 48 hours. Based on these curves, a modified PK/PD model was developed with two components: a growing silver-susceptible bacterial population and a depreciating bactericidal process. The test of goodness-of-fit showed that the model was robust and had good predictability ($R^2>0.7$). The model demonstrated that the current intensity was positively correlated to the initial killing rate and the bactericidal fatigue rate of the system while the anode surface area was negatively correlated to the fatigue rate. The model also allowed the determination of the effective range of these two parameters within which the system has significant antimicrobial efficacy. In conclusion, the modified PK/PD model successfully described bacterial growth and killing kinetics when the bacteria were exposed to the electrically activated silver-titanium implant system. This modeling approach as well as the model itself can also potentially contribute to the development of optimal design strategies for other similar antimicrobial systems.

Zernike 모멘트 기반의 회전 불변 홍채 인식 (Rotation-Invariant Iris Recognition Method Based on Zernike Moments)

  • 최창수;서정만;전병민
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권2호
    • /
    • pp.31-40
    • /
    • 2012
  • 홍채 인식은 홍채 패턴 정보를 이용하여 사람의 신원을 확인하는 생체 인식 기술이다. 이러한 홍채 인식 시스템에 있어 조명의 영향이나 동공의 크기, 머리의 기울어짐 등으로 인해 발생될 수 있는 홍채 패턴의 변화에 대해 무관한 특징을 추출하는 것은 중요한 과제이다. 본 논문에서는 Zernike Moment를 이용해 홍채의 회전에 강인한 홍채 인식 방법을 제안하였다. 빠르고 효과적인 인식을 위한 Zernike Moment를 선택하기 위해 전역 최적 차수를 이용하였고, 각각의 홍채 클래스와 매칭하기 위하여 국소 최적 차수를 사용 하였다. 제안된 방법은 특징 추출 및 특징 비교 시 회전에 대해 별도의 처리가 필요하지 않아 고속의 특징 추출 및 특징 비교가 가능하며 성능도 기존의 방법과 대등함을 실험을 통하여 확인하였다.

A Novel RGB Image Steganography Using Simulated Annealing and LCG via LSB

  • Bawaneh, Mohammed J.;Al-Shalabi, Emad Fawzi;Al-Hazaimeh, Obaida M.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.143-151
    • /
    • 2021
  • The enormous prevalence of transferring official confidential digital documents via the Internet shows the urgent need to deliver confidential messages to the recipient without letting any unauthorized person to know contents of the secret messages or detect there existence . Several Steganography techniques such as the least significant Bit (LSB), Secure Cover Selection (SCS), Discrete Cosine Transform (DCT) and Palette Based (PB) were applied to prevent any intruder from analyzing and getting the secret transferred message. The utilized steganography methods should defiance the challenges of Steganalysis techniques in term of analysis and detection. This paper presents a novel and robust framework for color image steganography that combines Linear Congruential Generator (LCG), simulated annealing (SA), Cesar cryptography and LSB substitution method in one system in order to reduce the objection of Steganalysis and deliver data securely to their destination. SA with the support of LCG finds out the optimal minimum sniffing path inside a cover color image (RGB) then the confidential message will be encrypt and embedded within the RGB image path as a host medium by using Cesar and LSB procedures. Embedding and extraction processes of secret message require a common knowledge between sender and receiver; that knowledge are represented by SA initialization parameters, LCG seed, Cesar key agreement and secret message length. Steganalysis intruder will not understand or detect the secret message inside the host image without the correct knowledge about the manipulation process. The constructed system satisfies the main requirements of image steganography in term of robustness against confidential message extraction, high quality visual appearance, little mean square error (MSE) and high peak signal noise ratio (PSNR).

An improved regularized particle filter for remaining useful life prediction in nuclear plant electric gate valves

  • Xu, Ren-yi;Wang, Hang;Peng, Min-jun;Liu, Yong-kuo
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2107-2119
    • /
    • 2022
  • Accurate remaining useful life (RUL) prediction for critical components of nuclear power equipment is an important way to realize aging management of nuclear power equipment. The electric gate valve is one of the most safety-critical and widely distributed mechanical equipment in nuclear power installations. However, the electric gate valve's extended service in nuclear installations causes aging and degradation induced by crack propagation and leakages. Hence, it is necessary to develop a robust RUL prediction method to evaluate its operating state. Although the particle filter(PF) algorithm and its variants can deal with this nonlinear problem effectively, they suffer from severe particle degeneracy and depletion, which leads to its sub-optimal performance. In this study, we combined the whale algorithm with regularized particle filtering(RPF) to rationalize the particle distribution before resampling, so as to solve the problem of particle degradation, and for valve RUL prediction. The valve's crack propagation is studied using the RPF approach, which takes the Paris Law as a condition function. The crack growth is observed and updated using the root-mean-square (RMS) signal collected from the acoustic emission sensor. At the same time, the proposed method is compared with other optimization algorithms, such as particle swarm optimization algorithm, and verified by the realistic valve aging experimental data. The conclusion shows that the proposed method can effectively predict and analyze the typical valve degradation patterns.

An R package UnifiedDoseFinding for continuous and ordinal outcomes in Phase I dose-finding trials

  • Pan, Haitao;Mu, Rongji;Hsu, Chia-Wei;Zhou, Shouhao
    • Communications for Statistical Applications and Methods
    • /
    • 제29권4호
    • /
    • pp.421-439
    • /
    • 2022
  • Phase I dose-finding trials are essential in drug development. By finding the maximum tolerated dose (MTD) of a new drug or treatment, a Phase I trial establishes the recommended doses for later-phase testing. The primary toxicity endpoint of interest is often a binary variable, which describes an event of a patient who experiences dose-limiting toxicity. However, there is a growing interest in dose-finding studies regarding non-binary outcomes, defined by either the weighted sum of rates of various toxicity grades or a continuous outcome. Although several novel methods have been proposed in the literature, accessible software is still lacking to implement these methods. This study introduces a newly developed R package, UnifiedDoseFinding, which implements three phase I dose-finding methods with non-binary outcomes (Quasi- and Robust Quasi-CRM designs by Yuan et al. (2007) and Pan et al. (2014), gBOIN design by Mu et al. (2019), and by a method by Ivanova and Kim (2009)). For each of the methods, UnifiedDoseFinding provides corresponding functions that begin with next that determines the dose for the next cohort of patients, select, which selects the MTD defined by the non-binary toxicity endpoint when the trial is completed, and get oc, which obtains the operating characteristics. Three real examples are provided to help practitioners use these methods. The R package UnifiedDoseFinding, which is accessible in R CRAN, provides a user-friendly tool to facilitate the implementation of innovative dose-finding studies with nonbinary outcomes.

A HPLC-UV method for quantification of ivermectin in solution from veterinary drug products

  • Kim, Young-Wook;Jeong, Wooseog
    • 한국동물위생학회지
    • /
    • 제45권3호
    • /
    • pp.243-248
    • /
    • 2022
  • The HPLC conditions for analysis of ivermectin in solutions dosage forms of commercial anthelmintics are different for each product. The purpose of this study was to establish a standardized chromatographic method for the quantification of ivermectin in solution. The separation was achieved on Waters Xbridge C18 column (4.6×150 nm, 5 ㎛) using different kinds of mobile phase composed of water/methanol/acetonitrile (15/34/51, v/v and 19.5/27.5/53, v/v), with UV detection at wavelengths 245 nm and 254 nm. A total of five commercial ivermectin in solution samples were analyzed. In this study, the optimal chromatographic conditions for analysis of ivermectin in solution were mobile phase of water/methanol/acetonitrile (15/34/51, v/v) at a flow rate of 1.0 mL/min and a detection wavelength of 245 nm using a Waters Xbridge C18 column (4.6×250 nm, 5 ㎛) at a column temperature of 25℃. The linearity was observed in the concentration range of 50~150 ㎍/mL, with a correlation coefficient, r2= 0.99999. The limit of detection and the limit of quantification were 0.88 and 2.68 ㎍/mL, respectively. The accuracy (% recovery) was found to be 98.9 to 100.3%. Intra-day and Intermediate precisions with relative standard deviations were less than 1.0%. The content of ivermectin for five market samples ranged 91.2~102.7%. The proposed method was also found to be robust, therefore, the method can be used for the routine analysis of ivermectin in solutions dosage forms.

토양건강성을 고려한 정화토 재활용을 위한 제도 개선 (Management Strategies to Improve Recycling of Remediated Soil with Sustained Soil Health )

  • 김민철;박용하;천미희;정명채;김정욱
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제28권5호
    • /
    • pp.59-67
    • /
    • 2023
  • This review examined the current administrative policies and guidelines for management of reclaimed soils after remediation processes and proposed practical strategies to improve the potential value of the remediated soil as a resource. Three management practices are proposed to facilitate more efficient recycling of remediated soil; obligatory use, quality certification, and tracking of the remediated soils. If properly implemented in utilization of remediated soil, these strategies could contribute to enhancing public safety by assuring soil quality. Such administrative tools, for both suppliers and demanders, are expected to mitigate potential risks associated with the transactions of remediated soil. To enhance the quality assurance process, a soil quality certification combined with the soil health assessment index was proposed. The systematic integration of the suggested practices with soil health assessment can allow to produce optimal results, encompassing affordability, efficiency, and accessibility, which helps establishing more robust 'Remediated Soil Recycling Management System (RSRMS)'. Subsequent researches should be conducted to develop more effective policies that incorporate soil health assessment tools. The proposed management practices for remediated soil, coupled with soil health assessment, can be a pioneering effort to achieve such goals. By fostering an environmentally friendly policies, the sustainable utilization of remediated soil can be attained. Overall, the proposed strategies can provide a sound framework for responsible and sustainable soil management practices.

Exploiting Natural Diatom Shells as an Affordable Polar Host for Sulfur in Li-S Batteries

  • Hyean-Yeol Park;Sun Hyu Kim;Jeong-Hoon Yu;Ji Eun Kwon;Ji Yang Lim;Si Won Choi;Jong-Sung Yu;Yongju Jung
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.198-206
    • /
    • 2024
  • Given the high theoretical capacity (1,675 mAh g-1) and the inherent affordability and ubiquity of elemental sulfur, it stands out as a prominent cathode material for advanced lithium metal batteries. Traditionally, sulfur was sequestered within conductive porous carbons, rooted in the understanding that their inherent conductivity could offset sulfur's non-conductive nature. This study, however, pivots toward a transformative approach by utilizing diatom shell (DS, diatomite)-a naturally abundant and economically viable siliceous mineral-as a sulfur host. This approach enabled the development of a sulfurlayered diatomite/S composite (DS/S) for cathodic applications. Even in the face of the insulating nature of both diatomite and sulfur, the DS/S composite displayed vigorous participation in the electrochemical conversion process. Furthermore, this composite substantially curbed the loss of soluble polysulfides and minimized structural wear during cycling. As a testament to its efficacy, our Li-S battery, integrating this composite, exhibited an excellent cycling performance: a specific capacity of 732 mAh g-1 after 100 cycles and a robust 77% capacity retention. These findings challenge the erstwhile conviction of requiring a conductive host for sulfur. Owing to diatomite's hierarchical porous architecture, eco-friendliness, and accessibility, the DS/S electrode boasts optimal sulfur utilization, elevated specific capacity, enhanced rate capabilities at intensified C rates, and steadfast cycling stability that underscore its vast commercial promise.

Microwave Radiation-Assisted Chitin Deacetylation: Optimization by Response Surface Methodology (RSM)

  • Iqmal Tahir;Karna Wijaya;Mudasir;Dita Krismayanti;Aldino Javier Saviola;Roswanira Abdul Wahab;Amalia Kurnia Amin;Wahyu Dita Saputri;Remi Ayu Pratika
    • 한국재료학회지
    • /
    • 제34권2호
    • /
    • pp.85-94
    • /
    • 2024
  • The optimization of deacetylation process parameters for producing chitosan from isolated chitin shrimp shell waste was investigated using response surface methodology with central composite design (RSM-CCD). Three independent variables viz, NaOH concentration (X1), radiation power (X2), and reaction time (X3) were examined to determine their respective effects on the degree of deacetylation (DD). The DD of chitosan was also calculated using the baseline approach of the Fourier Transform Infrared (FTIR) spectra of the yields. RSM-CCD analysis showed that the optimal chitosan DD value of 96.45 % was obtained at an optimized condition of 63.41 % (w/v) NaOH concentration, 227.28 W radiation power, and 3.34 min deacetylation reaction. The DD was strongly controlled by NaOH concentration, irradiation power, and reaction duration. The coefficients of correlation were 0.257, 0.680, and 0.390, respectively. Because the procedure used microwave radiation absorption, radiation power had a substantial correlation of 0.600~0.800 compared to the two low variables, which were 0.200~0.400. This independently predicted robust quadratic model interaction has been validated for predicting the DD of chitin.