• Title/Summary/Keyword: robust optimal

Search Result 793, Processing Time 0.028 seconds

Taguchi's Robust Design Method for Optimization of Grinding Condition by Hammer Mill (다구치 방법을 활용한 해머밀 분쇄공정의 최적화 연구)

  • Choe, Hong-Il;Kim, Byoung-Gon;Park, Chong-Lyuck;Jeong, Soo-Bok;Jeon, Ho-Seok;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.219-225
    • /
    • 2010
  • Optimal grinding condition was examined by changing only the size of screen opening with fixing other factors to produce coal fines of particle sizes required for circulating fluidized bed gasifier. At least 85 wt% of the coal particles should fall into the size range of 0.045~1.0 mm for efficient gasification. In this study, hammer mill was used to grind Chinese low rank lignite coal following grinding condition designed by Taguchi method. The analysis of signal to noise ratio showed that optimum grinding condition for the gasifier was 3 mm in primary screen size and 1.3 mm in secondary screen size on the 95% level of significance.

A Design of 2 DOF PID Controller Using Performance Index (평가지표를 이용한 2자유도 PID제어기 설계)

  • 유항열;이정국;이금원;이준모
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.66-72
    • /
    • 2004
  • PID control has been well used for several decades. For PID algorithms, some tuning methods are used for selecting PID parameters and with these selected parameters, PID control system is designed. But in some cases various kinds of performance indices are used instead of well-known tuning rules, and so variable type of performance index must be tested so that the designed control system meets the some specifications. For 2 DOF PID controller design this paper presents a linear combinational type of performance indices constituting of index for robust performance, which is obtained by h infinity norm of a weighted complementary sensitivity function, including other time domain indices such as error, energy and changing rate of control input. By numerical methods, the optimal 2 DOF PID parameters are obtained. Therefore various types of 2 degree of freedom PID controllers such as I-PD controller are used so that this two degree of freedom PID controllers may give more desirable output characteristics. Simulations are done with MATLAB m file and mdl files.

  • PDF

Circle Detection and Approximation for Inspecting a Fiber Optic Connector Endface (광섬유 연결 종단면 검사를 위한 원형 검출과 근사화 방법)

  • Kim, Jin-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2953-2960
    • /
    • 2014
  • In the field of image recognition, circle detection is one of the most widely used techniques. Conventional algorithms are mainly based on Hough transform, which is the most straightforward algorithm for detecting circles and for providing enough robust algorithm. However, it suffers from large memory requirements and high computational loads, and sometimes tends to detect incorrect circles. This paper proposes an optimal circle detection and approximation method which is applicable for inspecting fiber optic connector endface. The proposed method finds initial center coordinates and radius based on the initial edge lines. Then, by introducing the simplified K-means algorithm, the proposed method investigates a substitute-circle by minimizing the area of non-overlapped regions. Through extensive simulations, it is shown that the proposed method can improve the error rate by as much as 67% and also can reduce the computing time by as much as 80%, compared to the Hough transform provided by the OpenCV library.

Understanding of 3D Human Body Motion based on Mono-Vision (단일 비전 기반 인체의 3차원 운동 해석)

  • Han, Young-Mo
    • The KIPS Transactions:PartB
    • /
    • v.18B no.4
    • /
    • pp.193-200
    • /
    • 2011
  • This paper proposes a low-cost visual analyzer algorithm of human body motion for real-time applications such as human-computer interfacing, virtual reality applications in medicine and telemonitoring of patients. To reduce cost of its use, we design the algorithm to use a single camera. To make the proposed system to be used more conveniently, we avoid from using optical markers. To make the proposed algorithm be convenient for real-time applications, we design it to have a closed-form with high accuracy. To design a closed-form algorithm, we propose an idea that formulates motion of a human body joint as a 2D universal joint model instead of a common 3D spherical joint model, without any kins of approximation. To make the closed-form algorithm has high accuracy, we formulates the estimation process to be an optimization problem. Thus-desined algorithm is applied to each joint of the human body one after another. Through experiments we show that human body motion capturing can be performed in an efficient and robust manner by using our algorithm.

Open-jet boundary-layer processes for aerodynamic testing of low-rise buildings

  • Gol-Zaroudi, Hamzeh;Aly, Aly-Mousaad
    • Wind and Structures
    • /
    • v.25 no.3
    • /
    • pp.233-259
    • /
    • 2017
  • Investigations on simulated near-surface atmospheric boundary layer (ABL) in an open-jet facility are carried out by conducting experimental tests on small-scale models of low-rise buildings. The objectives of the current study are: (1) to determine the optimal location of test buildings from the exit of the open-jet facility, and (2) to investigate the scale effect on the aerodynamic pressure characteristics. Based on the results, the newly built open-jet facility is well capable of producing mean wind speed and turbulence profiles representing open-terrain conditions. The results show that the proximity of the test model to the open-jet governs the length of the separation bubble as well as the peak roof pressures. However, test models placed at a horizontal distance of 2.5H (H is height of the wind field) from the exit of the open-jet, with a width that is half the width of the wind field and a length of 1H, have consistent mean and peak pressure coefficients when compared with available results from wind tunnel testing. In addition, testing models with as large as 16% blockage ratio is feasible within the open-jet facility. This reveals the importance of open-jet facilities as a robust tool to alleviate the scale restrictions involved in physical investigations of flow pattern around civil engineering structures. The results and findings of this study are useful for putting forward recommendations and guidelines for testing protocols at open-jet facilities, eventually helping the progress of enhanced standard provisions on the design of low-rise buildings for wind.

Position and Attitude Control System Design of Magnetic Suspension and Balance System for Wind Tunnel Test using Iterative Feedback Tuning and L1 Adaptive Control Scheme (IFT와 L1 적응제어기법을 이용한 풍동실험용 자기부상 비접촉식 밸런스의 제어시스템 설계)

  • Lee, Dong-Kyu
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.28-35
    • /
    • 2017
  • Magnetic Suspension and Balance System (MSBS) demonstrates the capacity to levitate an experimental model absent any mechanical contact using magnetic forces and moments. It allows precise control of position and attitude of the model, and measures external forces and moments acting on the model. For the purpose of acquisition of reliable experimental results under stable and safe conditions, the performance and robustness of the position and attitude control system of MSBS needs to be improved. To this end, Iterative Feedback Tuning (IFT) and L1 adaptive output feedback algorithm were employed to automatically increase command following performance and to ensure robust operation of MSBS with failure of electric power supply. The applicability was validated using computational simulation.

A Study on the CMOS Camera robust to radiation environments (방사선 환경에 강인한 CMOS카메라에 관한 연구)

  • Baek, Dong-Hyun;Kim, Bae-Hoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.27-34
    • /
    • 2020
  • Human access is restricted to environment where radiation sources are used, however observation equipment should be radiation-resistant as it is exposed. Therefore, if tungsten with the highest specific gravity and melting point and the lowest lead were selected to reduce the dose to the Cobalt 60 radiation source to 1/8, Tu had a volume of 432.6cm3, a thickness of 2.4cm, and Pb had a volume of 961cm3,, a thickness of 3.6cm. By applying this method, produced a radiation resistant CMOS camera with a camera module using a CMOS Image sensor and a radiation shielding structured housing. As a result of applying the head detachable 2M AHD camera (No. ①) that survived the experiment to select the optimal shielding thickness, when shielding the associated equipment such as cameras, adapters, etc. is achieved, it was confirmed that the design of the structure is appropriate by operating well at doses higher than 1.88×106rad. Therefore, it is expected to secure the camera technology and business feasibility that can be applied to high radiation environments.

Optimal Acoustic Sound Localization System Based on a Tetrahedron-Shaped Microphone Array (정사면체 마이크로폰 어레이 기반 최적 음원추적 시스템)

  • Oh, Sangheon;Park, Kyusik
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.13-26
    • /
    • 2016
  • This paper proposes a new sound localization algorithm that can improve localization performance based on a tetrahedron-shaped microphone array. Sound localization system estimates directional information of sound source based on the time delay of arrival(TDOA) information between the microphone pairs in a microphone array. In order to obtain directional information of the sound source in three dimensions, the system requires at least three microphones. If one of the microphones fails to detect proper signal level, the system cannot produce a reliable estimate. This paper proposes a tetrahedron- shaped sound localization system with a coordinate transform method by adding one microphone to the previously known triangular-shaped system providing more robust and reliable sound localization. To verify the performance of the proposed algorithm, a real time simulation was conducted, and the results were compared to the previously known triangular-shaped system. From the simulation results, the proposed tetrahedron-shaped sound localization system is superior to the triangular-shaped system by more than 46% for maximum sound source detection.

Genetic Algorithm Based Attribute Value Taxonomy Generation for Learning Classifiers with Missing Data (유전자 알고리즘 기반의 불완전 데이터 학습을 위한 속성값계층구조의 생성)

  • Joo Jin-U;Yang Ji-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.133-138
    • /
    • 2006
  • Learning with Attribute Value Taxonomies (AVT) has shown that it is possible to construct accurate, compact and robust classifiers from a partially missing dataset (dataset that contains attribute values specified with different level of precision). Yet, in many cases AVTs are generated from experts or people with specialized knowledge in their domain. Unfortunately these user-provided AVTs can be time-consuming to construct and misguided during the AVT building process. Moreover experts are occasionally unavailable to provide an AVT for a particular domain. Against these backgrounds, this paper introduces an AVT generating method called GA-AVT-Learner, which finds a near optimal AVT with a given training dataset using a genetic algorithm. This paper conducted experiments generating AVTs through GA-AVT-Learner with a variety of real world datasets. We compared these AVTs with other types of AVTs such as HAC-AVTs and user-provided AVTs. Through the experiments we have proved that GA-AVT-Learner provides AVTs that yield more accurate and compact classifiers and improve performance in learning missing data.

Topology-aware Packet Size and Forward Rate for Energy Efficiency and Reliability in Dynamic Wireless Body Area Networks (동적 무선 인체 통신망의 에너지 효율과 신뢰성을 위한 토폴로지 인식 기반 패킷 크기 및 포워딩 비율 결정 방법)

  • Nguyen-Xuan, Sam;Kim, Dongwan;An, Sunshin
    • Journal of Internet Computing and Services
    • /
    • v.15 no.2
    • /
    • pp.9-18
    • /
    • 2014
  • The sensors attached on/in a person are moved since human body frequency changes their activity, therefore in wireless body area networks, nodal mobility and non-line-of-sight condition will impact on performance of networks such as energy efficiency and reliable communication. We then proposed schemes which study on forwarding decisions against frequent change of topology and channel conditions to increase reliable connections and improve energy efficiency. In this work, we control the size of packets, forwarding rate based on ratio of input links and output links at each node. We also robust the network topology by extending the peer to peer IEEE 802.15.4-based. The adaptive topology from chain-based to grid-based can optimal our schemes. The simulation shows that these approaches are not only extending network lifetime to 48.2 percent but also increase around 6.08 percent the packet delivery ratio. The "hot spots" problem is also resolved with this approach.