• Title/Summary/Keyword: robust model-fitting estimator

Search Result 1, Processing Time 0.014 seconds

Comparison of Model Fitting & Least Square Estimator for Detecting Mura (Mura 검출을 위한 Model Fitting 및 Least Square Estimator의 비교)

  • Oh, Chang-Hwan;Joo, Hyo-Nam;Rew, Keun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.415-419
    • /
    • 2008
  • Detecting and correcting defects on LCD glasses early in the manufacturing process becomes important for panel makers to reduce the manufacturing costs and to improve productivity. Many attempts have been made and were successfully applied to detect and identify simple defects such as scratches, dents, and foreign objects on glasses. However, it is still difficult to robustly detect low-contrast defect region, called Mura or blemish area on glasses. Typically, these defect areas are roughly defined as relatively large, several millimeters of diameter, and relatively dark and/or bright region of low Signal-to-Noise Ratio (SNR) against background of low-frequency signal. The aim of this article is to present a robust algorithm to segment these blemish defects. Early 90's, a highly robust estimator, known as the Model-Fitting (MF) estimator was developed by X. Zhuang et. al. and have been successfully used in many computer vision application. Compared to the conventional Least-Square (LS) estimator the MF estimator can successfully estimate model parameters from a dataset of contaminated Gaussian mixture. Such a noise model is defined as a regular white Gaussian noise model with probability $1-\varepsilon$ plus an outlier process with probability $varepsilon$. In the sense of robust estimation, the blemish defect in images can be considered as being a group of outliers in the process of estimating image background model parameters. The algorithm developed in this paper uses a modified MF estimator to robustly estimate the background model and as a by-product to segment the blemish defects, the outliers.