• Title/Summary/Keyword: robust damage detection

Search Result 47, Processing Time 0.02 seconds

Active damage localization technique based on energy propagation of Lamb waves

  • Wang, Lei;Yuan, F.G.
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.201-217
    • /
    • 2007
  • An active damage detection technique is introduced to locate damage in an isotropic plate using Lamb waves. This technique uses a time-domain energy model of Lamb waves in plates that the wave amplitude inversely decays with the propagation distance along a ray direction. Accordingly the damage localization is formulated as a least-squares problem to minimize an error function between the model and the measured data. An active sensing system with integrated actuators/sensors is controlled to excite/receive $A_0$ mode of Lamb waves in the plate. Scattered wave signals from the damage can be obtained by subtracting the baseline signal of the undamaged plate from the recorded signal of the damaged plate. In the experimental study, after collecting the scattered wave signals, a discrete wavelet transform (DWT) is employed to extract the first scattered wave pack from the damage, then an iterative method is derived to solve the least-squares problem for locating the damage. Since this method does not rely on time-of-flight but wave energy measurement, it is more robust, reliable, and noise-tolerant. Both numerical and experimental examples are performed to verify the efficiency and accuracy of the method, and the results demonstrate that the estimated damage position stably converges to the targeted damage.

Damage assessment in periodic structures from measured natural frequencies by a sensitivity and transfer matrix-based method

  • Zhu, Hongping;Li, Lin;Wang, Dansheng
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.17-34
    • /
    • 2003
  • This paper presents a damage assessment procedure applied to periodic spring mass systems using an eigenvalue sensitivity-based method. The damage is directly related to the stiffness reduction of the damage element. The natural frequencies of periodic structures with one single disorder are found by adopting the transfer matrix approach, consequently, the first order approximation of the natural frequencies with respect to the disordered stiffness in different elements is used to form the sensitivity matrix. The analysis shows that the sensitivity of natural frequencies to damage in different locations depends only on the mode number and the location of damage. The stiffness changes due to damage can be identified by solving a set of underdetermined equations based on the sensitivity matrix. The issues associated with many possible damage locations in large structural systems are addressed, and a means of improving the computational efficiency of damage detection while maintaining the accuracy for large periodic structures with limited available measured natural frequencies, is also introduced in this paper. The incomplete measurements and the effect of random error in terms of measurement noise in the natural frequencies are considered. Numerical results of a periodic spring-mass system of 20 degrees of freedom illustrate that the proposed method is simple and robust in locating single or multiple damages in a large periodic structure with a high computational efficiency.

Fin failure diagnosis for non-linear supersonic air vehicle based on inertial sensors

  • Ashrafifar, Asghar;Jegarkandi, Mohsen Fathi
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • In this paper, a new model-based Fault Detection and Diagnosis (FDD) method for an agile supersonic flight vehicle is presented. A nonlinear model, controlled by a classical closed loop controller and proportional navigation guidance in interception scenario, describes the behavior of the vehicle. The proposed FDD method employs the Inertial Navigation System (INS) data and nonlinear dynamic model of the vehicle to inform fins damage to the controller before leading to an undesired performance or mission failure. Broken, burnt, unactuated or not opened control surfaces cause a drastic change in aerodynamic coefficients and consequently in the dynamic model. Therefore, in addition to the changes in the control forces and moments, system dynamics will change too, leading to the failure detection process being encountered with difficulty. To this purpose, an equivalent aerodynamic model is proposed to express the dynamics of the vehicle, and the health of each fin is monitored by the value of a parameter which is estimated using an adaptive robust filter. The proposed method detects and isolates fins damages in a few seconds with good accuracy.

Multiple damage detection of maglev rail joints using time-frequency spectrogram and convolutional neural network

  • Wang, Su-Mei;Jiang, Gao-Feng;Ni, Yi-Qing;Lu, Yang;Lin, Guo-Bin;Pan, Hong-Liang;Xu, Jun-Qi;Hao, Shuo
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.625-640
    • /
    • 2022
  • Maglev rail joints are vital components serving as connections between the adjacent F-type rail sections in maglev guideway. Damage to maglev rail joints such as bolt looseness may result in rough suspension gap fluctuation, failure of suspension control, and even sudden clash between the electromagnets and F-type rail. The condition monitoring of maglev rail joints is therefore highly desirable to maintain safe operation of maglev. In this connection, an online damage detection approach based on three-dimensional (3D) convolutional neural network (CNN) and time-frequency characterization is developed for simultaneous detection of multiple damage of maglev rail joints in this paper. The training and testing data used for condition evaluation of maglev rail joints consist of two months of acceleration recordings, which were acquired in-situ from different rail joints by an integrated online monitoring system during a maglev train running on a test line. Short-time Fourier transform (STFT) method is applied to transform the raw monitoring data into time-frequency spectrograms (TFS). Three CNN architectures, i.e., small-sized CNN (S-CNN), middle-sized CNN (M-CNN), and large-sized CNN (L-CNN), are configured for trial calculation and the M-CNN model with excellent prediction accuracy and high computational efficiency is finally optioned for multiple damage detection of maglev rail joints. Results show that the rail joints in three different conditions (bolt-looseness-caused rail step, misalignment-caused lateral dislocation, and normal condition) are successfully identified by the proposed approach, even when using data collected from rail joints from which no data were used in the CNN training. The capability of the proposed method is further examined by using the data collected after the loosed bolts have been replaced. In addition, by comparison with the results of CNN using frequency spectrum and traditional neural network using TFS, the proposed TFS-CNN framework is proven more accurate and robust for multiple damage detection of maglev rail joints.

Damage detection for a beam under transient excitation via three different algorithms

  • Zhao, Ying;Noori, Mohammad;Altabey, Wael A.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.803-817
    • /
    • 2017
  • Structural health monitoring has increasingly been a focus within the civil engineering research community over the last few decades. With increasing application of sensor networks in large structures and infrastructure systems, effective use and development of robust algorithms to analyze large volumes of data and to extract the desired features has become a challenging problem. In this paper, we grasp some precautions and key points of the signal processing approach, wavelet, establish a relative reliable framework, and analyze three problems that require attention when applying wavelet based damage detection approach. The cases studies how to use optimal scales for extracting mode shapes and modal curvatures in a reinforced concrete beam and how to effectively identify damages using maximum curves of wavelet coefficient differences. Moreover, how to make a recognition based on the wavelet multi-resolution analysis, wavelet packet energy, and fuzzy sets is a meaningful topic that has been addressed in this work. The relative systematic work that compasses algorithms, structures and evaluation paves a way to a framework regarding effective structural health monitoring, orientation, decision and action.

Advances and challenges in impedance-based structural health monitoring

  • Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.4
    • /
    • pp.301-329
    • /
    • 2017
  • Impedance-based damage detection method has been known as an innovative tool with various successful implementations for structural health monitoring of civil structures. To monitor the local critical area of a structure, the impedance-based method utilizes the high-frequency impedance responses sensed by piezoelectric sensors as the local dynamic features. In this paper, current advances and future challenges of the impedance-based structural health monitoring are presented. Firstly, theoretical background of the impedance-based method is outlined. Next, an overview is given to recent advances in the wireless impedance sensor nodes, the interfacial impedance sensing devices, and the temperature-effect compensation algorithms. Various research works on these topics are reviewed to share up-to-date information on research activities and implementations of the impedance-based technique. Finally, future research challenges of the technique are discussed including the applicability of wireless sensing technology, the predetermination of effective frequency bands, the sensing region of impedance responses, the robust compensation of noise and temperature effects, the quantification of damage severity, and long-term durability of sensors.

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

A review on deep learning-based structural health monitoring of civil infrastructures

  • Ye, X.W.;Jin, T.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.567-585
    • /
    • 2019
  • In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.

Structural damage detection based on residual force vector and imperialist competitive algorithm

  • Ding, Z.H.;Yao, R.Z.;Huang, J.L.;Huang, M.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.709-717
    • /
    • 2017
  • This paper develops a two-stage method for structural damage identification by using modal data. First, the Residual Force Vector (RFV) is introduced to detect any potentially damaged elements of structures. Second, data of the frequency domain are used to build up the objective function, and then the Imperialist Competitive Algorithm (ICA) is utilized to estimate damaged extents. ICA is a heuristic algorithm with simple structure, which is easy to be implemented and it is effective to deal with high-dimension nonlinear optimization problem. The advantages of this present method are: (1) Calculation complexity can be decreased greatly after eliminating many intact elements in the first step. (2) Robustness, ICA ensures the robustness of the proposed method. Various damaged cases and different structures are investigated in numerical simulations. From these results, anyone can point out that the present algorithm is effective and robust for structural damage identification and is also better than many other heuristic algorithms.

Multi-constrained optimization combining ARMAX with differential search for damage assessment

  • K, Lakshmi;A, Rama Mohan Rao
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.689-712
    • /
    • 2019
  • Time-series models like AR-ARX and ARMAX, provide a robust way to capture the dynamic properties of structures, and their residuals can be effectively used as features for damage detection. Even though several research papers discuss the implementation of AR-ARX and ARMAX models for damage diagnosis, they are basically been exploited so far for detecting the time instant of damage and also the spatial location of the damage. However, the inverse problem associated with damage quantification i.e. extent of damage using time series models is not been reported in the literature. In this paper, an approach to detect the extent of damage by combining the ARMAX model by formulating the inverse problem as a multi-constrained optimization problem and solving using a newly developed hybrid adaptive differential search with dynamic interaction is presented. The proposed variant of the differential search technique employs small multiple populations which perform the search independently and exchange the information with the dynamic neighborhood. The adaptive features and local search ability features are built into the algorithm in order to improve the convergence characteristics and also the overall performance of the technique. The multi-constrained optimization formulations of the inverse problem, associated with damage quantification using time series models, attempted here for the first time, can considerably improve the robustness of the search process. Numerical simulation studies have been carried out by considering three numerical examples to demonstrate the effectiveness of the proposed technique in robustly identifying the extent of the damage. Issues related to modeling errors and also measurement noise are also addressed in this paper.