• Title/Summary/Keyword: robust compensator

Search Result 165, Processing Time 0.019 seconds

Smart tracking design for aerial system via fuzzy nonlinear criterion

  • Wang, Ruei-yuan;Hung, C.C.;Ling, Hsiao-Chi
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.617-624
    • /
    • 2022
  • A new intelligent adaptive control scheme was proposed that combines the control based on interference observer and fuzzy adaptive s-curve for flight path tracking control of unmanned aerial vehicle (UAV). The most important contribution is that the control configurations don't need to know the uncertainty limit of the vehicle and the influence of interference is removed. The proposed control law is an integration of fuzzy control estimator and adaptive proportional integral (PI) compensator with input. The rated feedback drive specifies the desired dynamic properties of the closed control loop based on the known properties of the preferred acceleration vector. At the same time, the adaptive PI control compensate for the unknown of perturbation. Additional terms such as s-surface control can ensure rapid convergence due to the non-linear representation on the surface and also improve the stability. In addition, the observer improves the robustness of the adaptive fuzzy system. It has been proven that the stability of the regulatory system can be ensured according to linear matrix equality based Lyapunov's theory. In summary, the numerical simulation results show the efficiency and the feasibility by the use of the robust control methodology.

Precision Speed Control of PMSM Using Disturbance Observer and Parameter Compensator (외란관측기와 파라미터 보상기를 이용한 PMSM의 정밀속도제어)

  • 고종선;이택호;김칠환;이상설
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.98-106
    • /
    • 2001
  • This paper presents external load disturbance compensation that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a dead beat observer that is well-known method. However it has disadvantage such as a noise amplification effect. To reduce of the effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM(recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. Although RLSM estimator is one of the most effective methods for online parameter identification, it is difficult to obtain unbiased result in this application. It is caused by disturbed dynamic model with external torque. The proposed RLSM estimator is combined with a high performance torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation and experiment, are shown in this paper.

  • PDF

Systematic Design Method of Fuzzy Logic Controllers by Using Fuzzy Control Cell (퍼지제어 셀을 이용한 퍼지논리제어기의 조직적인 설계방법)

  • 남세규;김종식;유완석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1234-1243
    • /
    • 1992
  • A systematic procedure to design fuzzy PID controllers is developed in this paper. The concept of local fuzzy control cell is proposed by introducing both an adequate global control rule and membership functions to simplify a fuzzy logic controller. Fuzzy decision is made by using algebraic product and parallel firing arithematic mean, and a defuzzification strategy is adopted for improving the computational efficiency based on nonfuzzy micro-processor. A direct method, transforming the typical output of quasi-linear fuzzy operator to the digital compensator of PID form, is also proposed. Finally, the proposed algorithm is applied to an DC-servo motor. It is found that this algorithm is systematic and robust through computer simulations and implementation of controller using Intel 8097 micro-processor.

Recent Research Trends in Touchscreen Readout Systems (최근 터치스크린 Readout 시스템의 연구 경향)

  • Jun-Min Lee;Ju-Won Ham;Woo-Seok Jang;Ha-Min Lee;Sang-Mo Koo;Jong-Min Oh;Seung-Hoon Ko
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.423-432
    • /
    • 2023
  • With the increasing demand for mobile devices featuring multi-touch operation, extensive research is being conducted on touch screen panel (TSP) Readout ICs (ROICs) that should possess low power consumption, compact chip size, and immunity to external noise. Therefore, this paper discusses capacitive touch sensors and their readout circuits, and it introduces research trends in various circuit designs that are robust against external noise sources. The recent state-of-the-art TSP ROICs have primarily focused on minimizing the impact of parasitic capacitance (Cp) caused by thin panel thickness. The large Cp can be effectively compensated using an area-efficient current compensator and Current Conveyor (CC), while a display noise reduction scheme utilizing a noise-antenna (NA) electrode significantly improves the signal-to-noise ratio (SNR). Based on these achievements, it is expected that future TSP ROICs will be capable of stable operation with thinner and flexible Touch Screen Panels (TSPs).

Cumulative control output compensation technique for voice coil actuator used in small guided missiles (소형 유도무기용 보이스 코일 구동장치의 누적 제어 출력 보상 기법)

  • Wonsung Lee;Gwang Tae Kim;Choonghee Lee;Yongseon Lee;Seungho Jeong;Sungho Choi
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2024
  • In this study, we researched control compensation techniques to enhance control robustness against external forces and responsiveness to output dead zones in direct-actuated voice coil actuators for small guided missiles. An aircraft's wings must optimally control the command angle while managing various nonlinear external forces such as drag, lift, and thrust during flight. The small direct -drive voice coil actuator, when applied, benefits from small current requirements in no-load situations but suffers from diminished control robustness due to rapid increases in control current during external force applications. To address this issue, we designed and implemented a system that compensates for errors by accumulating additional output, thus improving the actuator's responsiveness in control scenarios with external forces. This was verified through experimental results.