• Title/Summary/Keyword: robust adaptive fuzzy control

Search Result 106, Processing Time 0.026 seconds

A Study on Adaptive Random Signal-Based Learning Employing Genetic Algorithms and Simulated Annealing (유전 알고리즘과 시뮬레이티드 어닐링이 적용된 적응 랜덤 신호 기반 학습에 관한 연구)

  • Han, Chang-Wook;Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.819-826
    • /
    • 2001
  • Genetic algorithms are becoming more popular because of their relative simplicity and robustness. Genetic algorithms are global search techniques for nonlinear optimization. However, traditional genetic algorithms, though robust, are generally not the most successful optimization algorithm on any particular domain because they are poor at hill-climbing, whereas simulated annealing has the ability of probabilistic hill-climbing. Therefore, hybridizing a genetic algorithm with other algorithms can produce better performance than using the genetic algorithm or other algorithms independently. In this paper, we propose an efficient hybrid optimization algorithm named the adaptive random signal-based learning. Random signal-based learning is similar to the reinforcement learning of neural networks. This paper describes the application of genetic algorithms and simulated annealing to a random signal-based learning in order to generate the parameters and reinforcement signal of the random signal-based learning, respectively. The validity of the proposed algorithm is confirmed by applying it to two different examples.

  • PDF

High Performance Speed Control of SynRM Drive using FNN and NNC (FNN과 NNC를 이용한 SynRM 드라이브의 고성능 속도제어)

  • Kim, Soon-Young;Ko, Jae-Sub;Kang, Seong-Jun;Jang, Mi-Geum;Mun, Ju-Hui;Lee, Jin-Kook;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1113-1114
    • /
    • 2011
  • This paper is proposed design of high performance controller of SynRM drive using FNN and NNC. Also, This paper is proposed of designing fuzzy neural network controller(FNNC) which adopts the fuzzy logic to the artificial neural network(ANN). FNNC combines the capability of fuzzy reasoning in handling uncertain information and the capability of neural network in learning from processes. This controller is controlled speed using FNNC and model reference adaptive fuzzy control(MFC), and estimation of speed using ANN. The performance of proposed controller was demonstrated through response results. The results confirm that the proposed controller is high performance and robust under the variation of load torque and parameters.

  • PDF

퍼지이론을 이용한 유고감지 알고리즘

  • 이시복
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.12a
    • /
    • pp.77-107
    • /
    • 1995
  • This paper documents the development of a fuzzy logic based incident detection model for urban diamond interchanges. Research in incident detection for intersections and arterials is at a very initial stage. Existing algorithms are still far from being robust in dealing with the difficulties related with data availability and the multi-dimensional nature of the incident detection problem. The purpose of this study is to develop a new real-time incident detection model for urban diamond interchanges. The development of the algorithm is based on fuzzy logic. The incident detection model developed through this research is capable of detecting lane¬blocking incidents when their effects are manifested by certain patterns of deterioration in traffic conditions and, thereby, adjustments in signal control strategies are required. The model overcomes the boundary condition problem inherent in conventional threshold-based concepts. The model captures system-wide incident effects utilizing multiple measures for more accurate and reliable detection, and serves as a component module of a real-time traffic adaptive diamond interchange control system. The model is designed to be readily scalable and expandable for larger systems of arterial streets. The prototype incident detection model was applied to an actual diamond interchange to investigate its performance. A simulation study was performed to evaluate the model's performance in terms of detection rate, false alarm rate, and mean time to detect. The model's performance was encouraging, and the fuzzy logic based approach to incident detection is promising.

  • PDF

LQG modeling and GA control of structures subjected to earthquakes

  • Chen, ZY;Jiang, Rong;Wang, Ruei-Yuan;Chen, Timothy
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.421-430
    • /
    • 2022
  • This paper addresses the stochastic control problem of robots within the framework of parameter uncertainty and uncertain noise covariance. First of all, an open circle deterministic trajectory optimization issue is explained without knowing the unequivocal type of the dynamical framework. Then, a Linear Quadratic Gaussian (LQG) controller is intended for the ostensible trajectory-dependent linearized framework, to such an extent that robust hereditary NN robotic controller made out of the Kalman filter and the fuzzy controller is blended to ensure the asymptotic stability of the non-continuous controlled frameworks. Applicability and performance of the proposed algorithm shown through simulation results in the complex systems which are demonstrate the feasible to improve the performance by the proposed approach.

Stochastic intelligent GA controller design for active TMD shear building

  • Chen, Z.Y.;Peng, Sheng-Hsiang;Wang, Ruei-Yuan;Meng, Yahui;Fu, Qiuli;Chen, Timothy
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.51-57
    • /
    • 2022
  • The problem of optimal stochastic GA control of the system with uncertain parameters and unsure noise covariates is studied. First, without knowing the explicit form of the dynamic system, the open-loop determinism problem with path optimization is solved. Next, Gaussian linear quadratic controllers (LQG) are designed for linear systems that depend on the nominal path. A robust genetic neural network (NN) fuzzy controller is synthesized, which consists of a Kalman filter and an optimal controller to assure the asymptotic stability of the discrete control system. A simulation is performed to prove the suitability and performance of the recommended algorithm. The results indicated that the recommended method is a feasible method to improve the performance of active tuned mass damper (ATMD) shear buildings under random earthquake disturbances.

Adaptive Neuro-fuzzy-based modeling of exhaust emissions from dual-fuel engine using biodiesel and producer gas

  • Prabhakar Sharma;Avdhesh Kr Sharma
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.175-184
    • /
    • 2022
  • The dual-fuel technology, which uses gaseous fuel as the main fuel and liquid as the pilot fuel, is an appealing technology for reducing the exhaust emissions. The current study proposes emission models based on ANFIS for a dual-fuel using producer gas (PG)-diesel engine. Emissions measurements were taken at different engine load levels and fuel injection timings. The proposed model predictions were examined using statistical methods. With R2 values in the range of 0.9903 to 0.9951, the established ANFIS model was found to be consistently robust in predicting emission characteristics. The mean absolute percentage deviate in range 1.9 to 4.6%, and mean squared error varies in range 0.0018 to 13.9%. The evaluation of the ANFIS model developed shows a reliable claim of intrinsic sensitivity, strength, and outstanding generalization. The presented meta-model can be used to simulate the engine's operation in order to create an efficient control tool.