• Title/Summary/Keyword: robots task planning

Search Result 40, Processing Time 0.027 seconds

Optimized Motion Planning Considering the Lifetime for Bimanual Robotic Assembly (양팔 로봇을 이용한 조립 작업에서 수명을 고려한 최적 운동 계획법)

  • Hwang, Myun Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.972-976
    • /
    • 2015
  • The objective of this research is to verify the quantitative efficiency of a bimanual robotic task. Bimanual robots can realize dexterous and complicated motions using two cooperating arms. However, its motion planning and control method are not simple for implementing flexible tasks such as assembly. In this paper, the proposed motion planning method is used to find an optimal solution satisfying a designed cost function and constraints with regard to the kinematics and redundancy of the bimanual robot. The simulation results show that the lifetime of the manipulator can be changed by the proposed cost function consisting of angular velocity and angular acceleration of each joint in the same assembly task.

Sensor-based Motion Planning Algorithm for High-rise Building Facade Cleaning of Built-in Guide Type Multi-Robot (Built-in guide 타입 다중 로봇의 고층 빌딩 외벽 청소를 위한 센서 기반 운동 계획 알고리즘)

  • Lee, Seung-Hoon;Kim, Dong-Hyung;Kang, Min-Sung;Gil, Myung-Soo;Kim, Young-Soo;Back, Sung-Hoon;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.445-452
    • /
    • 2012
  • With the increasing number of high-rise and large-scale buildings, modern buildings are becoming intelligent, and are incurring high construction costs and requiring careful maintenance. Maintenance works for high-rise buildings significantly depend on human labor, unlike other construction processes that are gradually being automated. The resulting accidents may produce very high social and economic losses. To address this problem, herein, this paper proposes robotic building maintenance system using multi-robot concept, in specific, cleaning a building facade which is directly subjected to minimize human labor; that improves the process efficiency and economic feasibility. The sensor for detecting contamination of building's outer-wall glass is proposed; Kalman filter was used for estimating robots' status with the contamination of the window glass. Task allocation of the sensor based multi-robots for an effective way of task execution is introduced and the feasibility was verified through the simulations.

Path Planning with Obstacle Avoidance Based on Double Deep Q Networks (이중 심층 Q 네트워크 기반 장애물 회피 경로 계획)

  • Yongjiang Zhao;Senfeng Cen;Seung-Je Seong;J.G. Hur;Chang-Gyoon Lim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.231-240
    • /
    • 2023
  • It remains a challenge for robots to learn avoiding obstacles automatically in path planning using deep reinforcement learning (DRL). More and more researchers use DRL to train a robot in a simulated environment and verify the possibility of DRL to achieve automatic obstacle avoidance. Due to the influence factors of different environments robots and sensors, it is rare to realize automatic obstacle avoidance of robots in real scenarios. In order to learn automatic path planning by avoiding obstacles in the actual scene we designed a simple Testbed with the wall and the obstacle and had a camera on the robot. The robot's goal is to get from the start point to the end point without hitting the wall as soon as possible. For the robot to learn to avoid the wall and obstacle we propose to use the double deep Q networks (DDQN) to verify the possibility of DRL in automatic obstacle avoidance. In the experiment the robot used is Jetbot, and it can be applied to some robot task scenarios that require obstacle avoidance in automated path planning.

A combined auction mechanism for online instant planning in multi-robot transportation problem

  • Jonban, Mansour Selseleh;Akbarimajd, Adel;Hassanpour, Mohammad
    • Advances in robotics research
    • /
    • v.2 no.3
    • /
    • pp.247-257
    • /
    • 2018
  • Various studies have been performed to coordinate robots in transporting objects and different artificial intelligence algorithms have been considered in this field. In this paper, we investigate and solve Multi-Robot Transportation problem by using a combined auction algorithm. In this algorithm each robot, as an agent, can perform the auction and allocate tasks. This agent tries to clear the auction by studying different states to increase payoff function. The algorithm presented in this paper has been applied to a multi-robot system where robots are responsible for transporting objects. Using this algorithm, robots are able to improve their actions and decisions. To show the excellence of the proposed algorithm, its performance is compared with three heuristic algorithms by statistical simulation approach.

Technical Trends in Artificial Intelligence for Robotics Based on Large Language Models (거대언어모델 기반 로봇 인공지능 기술 동향 )

  • J. Lee;S. Park;N.W. Kim;E. Kim;S.K. Ko
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.1
    • /
    • pp.95-105
    • /
    • 2024
  • In natural language processing, large language models such as GPT-4 have recently been in the spotlight. The performance of natural language processing has advanced dramatically driven by an increase in the number of model parameters related to the number of acceptable input tokens and model size. Research on multimodal models that can simultaneously process natural language and image data is being actively conducted. Moreover, natural-language and image-based reasoning capabilities of large language models is being explored in robot artificial intelligence technology. We discuss research and related patent trends in robot task planning and code generation for robot control using large language models.

Trajectory Planning of Articulated Robots with Minimum-Time Criterion (최소시간을 고려한 다관절 로봇의 궤적계획)

  • Choi, J.S.;Yang, S.M.;Kang, H.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.122-127
    • /
    • 1996
  • The achievement of the optimal condition for the task of an industrial articulated robot used in many fields is an important problem to improve productivity. In this paper, a minimum-time trajectory for an articulated robot along the specified path is studied and simulated with a proper example. A general dynamic model of manipulator is represented as a function of path distance. Using this model, the velocity is produced as fast as possible at each point along the path. This minimum-time trajectory planning module together with the existing collision-free path planning modules is utilized to design the optimal path planning of robot in cases where obstacles present.

  • PDF

Object Pose Estimation and Motion Planning for Service Automation System (서비스 자동화 시스템을 위한 물체 자세 인식 및 동작 계획)

  • Youngwoo Kwon;Dongyoung Lee;Hosun Kang;Jiwook Choi;Inho Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.176-187
    • /
    • 2024
  • Recently, automated solutions using collaborative robots have been emerging in various industries. Their primary functions include Pick & Place, Peg in the Hole, fastening and assembly, welding, and more, which are being utilized and researched in various fields. The application of these robots varies depending on the characteristics of the grippers attached to the end of the collaborative robots. To grasp a variety of objects, a gripper with a high degree of freedom is required. In this paper, we propose a service automation system using a multi-degree-of-freedom gripper, collaborative robots, and vision sensors. Assuming various products are placed at a checkout counter, we use three cameras to recognize the objects, estimate their pose, and create grasping points for grasping. The grasping points are grasped by the multi-degree-of-freedom gripper, and experiments are conducted to recognize barcodes, a key task in service automation. To recognize objects, we used a CNN (Convolutional Neural Network) based algorithm and point cloud to estimate the object's 6D pose. Using the recognized object's 6d pose information, we create grasping points for the multi-degree-of-freedom gripper and perform re-grasping in a direction that facilitates barcode scanning. The experiment was conducted with four selected objects, progressing through identification, 6D pose estimation, and grasping, recording the success and failure of barcode recognition to prove the effectiveness of the proposed system.

Path planning in nuclear facility decommissioning: Research status, challenges, and opportunities

  • Adibeli, Justina Onyinyechukwu;Liu, Yong-kuo;Ayodeji, Abiodun;Awodi, Ngbede Junior
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3505-3516
    • /
    • 2021
  • During nuclear facility decommissioning, workers are continuously exposed to high-level radiation. Hence, adequate path planning is critical to protect workers from unnecessary radiation exposure. This work discusses recent development in radioactive path planning and the algorithms recommended for the task. Specifically, we review the conventional methods for nuclear decommissioning path planning, analyze the techniques utilized in developing algorithms, and enumerate the decision factors that should be considered to optimize path planning algorithms. As a major contribution, we present the quantitative performance comparison of different algorithms utilized in solving path planning problems in nuclear decommissioning and highlight their merits and drawbacks. Also, we discuss techniques and critical consideration necessary for efficient application of robots and robotic path planning algorithms in nuclear facility decommissioning. Moreover, we analyze the influence of obstacles and the environmental/radioactive source dynamics on algorithms' efficiency. Finally, we recommend future research focus and highlight critical improvements required for the existing approaches towards a safer and cost-effective nuclear-decommissioning project.

Framework of a Cooperative Control Software for Heterogeneous Multiple Network Based Humanoid (이종 다수의 네트워크 기반 휴머노이드를 위한 협조제어 소프트웨어 프레임워크)

  • Lim, Heon-Young;Kang, Yeon-Sik;Lee, Joong-Jae;Kim, Jong-Won;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.226-236
    • /
    • 2008
  • In this paper, control software architecture is designed to enable a heterogeneous multiple humanoid robot demonstration executing tasks cooperating with each other. In the heterogeneous humanoid robot team, one large humanoid robot and two small humanoid robots are included. For the efficient and reliable information sharing between many software components for humanoid control, sensing and planning, CORBA based software framework is applied. The humanoid tasks are given in terms of finite state diagram based human-robot interface, which is interpreted into the XML based languages defining the details of the humanoid mission. A state transition is triggered based on the event which is described in terms of conditions on the sensor measurements such as robot locations and the external vision system. In the demonstration of the heterogeneous humanoid team, the task of multiple humanoid cleaning the table is given to the humanoid robots and successfully executed based on the given state diagram.

  • PDF

Design and Implementation of Tripodal Schematic Control Architecture for Multi-Functional Service Robots

  • Kim, Gun-Hee;Chung, Woo-Jin;Kim, Mun-Sang;Lee, Chong-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2045-2050
    • /
    • 2003
  • This paper describes the development of service robotic systems with the Tripodal schematic control architecture. We show practical advantages of the proposed architecture by giving examples of our experience. First, we explain how to add new task using Tripodal architecture approach. The Tripodal architecture provides some crucial organizing principles and core components that are used to build the basis for the system. Thus, the newly developed behaviors, motion algorithm, knowledge, and planning schemes are arranged so as to guarantee the efficiency of the performance of components. Second, we describe the reusability and scaleability of our architecture by introducing the implementation process of the guide robot Jinny. Most of modules developed for former robots like PSR-1 and PSR-2 systems are used directly to the Jinny system without significant modification. Experimental results clearly showed that the developed strategy is useful, even if the hardware configurations as well as software algorithms are more complex and more accumulating.

  • PDF