• Title/Summary/Keyword: robotic arm

Search Result 135, Processing Time 0.027 seconds

A Study on the Dynamic Analysis for Flexible Robotic Arms (유연 로보트팔의 동특성 해석에 관한 연구)

  • Kim, Chang-Boo;You, Young-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.107-116
    • /
    • 1993
  • In the design and operation of robitic arm with flexible links, the equation of motion are required to exactly model the interaction between rigid body motion and elastic motion and to be formulated efficientlyl. In this paper, the flexible link is represented by applying the D-H rigid link representation method to measure the elestic deformation. And the equations of motion of robotic arm, which are configured by the generalized coordinates of elastic and rigid degrees of freedom, are formulated from the principle of virtual power. Dynamic characteristics due to elastic deformation of each link are obtained by using F. E. M to model complex shaped link acurately and by eliminating elastic modes of higher order that do not largely affect motion to reduce the number of elastic degrees of freedom. Also presented is the result of simulation of flexible robotic arms whose joints are controlled by direct or PD control.

  • PDF

A study on the control of robotic manipulators with flexibility (탄성을 고려한 로보트 매니플레이터의 제어에 관한 연구)

  • Lee, Si-Bok;Jo, Hyeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.2
    • /
    • pp.23-32
    • /
    • 1988
  • A control system for improving the moving accuracy of robotic manipulators with elastic joints is devloped. The dynamics of manipulator system is splitted into two sub-dynamics; of arm-link and actuator rotor- link, which are coupled statically through joint torque. Two contorl loops are implemented respectively around both sub-dynamic systems. Computed torque algorithm with acceleration feedback is used for the arm-link control loop, and for the actuator rotor-link control loop PID algorithm is adopted. The resulting control system is tested through a series of computer simulation for a PUMA type manipulator, The reaults show good performance of the developed control system for wide range of joint stiffness and moving speed.

  • PDF

A Feasibility Study on a Robotic Exercise System for MDOF Physical Rehabilitation Therapy

  • Sim, Hyung Joon;Won, Joo Yeon;Han, Chang Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1949-1960
    • /
    • 2004
  • This paper presents a robot system developed for medical purpose. A 6-degree-of-freedom robot was introduced for physical exercise and rehabilitation. This system was proposed for stroke patients or patients who cannot use one of their arms or legs. The robot system exercises the hemiplegic part based on the motion of normal part of a patient. Kinematic studies on the human body and robot were applied to develop the robotic rehabilitation exercise system. A clamp which acts as an end effector of the robot to hold a patient was designed and applied to the robot to guarantee the safety of patients. The proposed robotic rehabilitation system was verified by simulations and experiments on arm (elbow and shoulder) motion. Patients are expected to be able to exercise various motions by themselves with the proposed robotic rehabilitation system.

Development and Case of Manipulator Robot for Live-Working on Distribution Lines (배전선로 무정전 활선작업용 Manipulator 개발현황 및 사례)

  • Kim, Jae-Hoon;Kim, Seung-Ho;Kim, Chang-Hoi;Lee, Heung-Ho;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2005.05b
    • /
    • pp.45-50
    • /
    • 2005
  • Nowadays, economical and social environments are changing to the type of an advanced country for development of techniques in power industry. So most of workers are recently avoiding the 3D works and asking for safety of working environment, etc. in highly dangerous parts such as hot line working on distribution lines, especially. Therefore, most advanced countries are using the support-arm or robotic systems on distribution line works for securing the construction reliability, economical feasibility and protection of linemen from the electric shock and so forth. In special Japanese electric power companies are using the robotic system named manipulator. In Korea, a support-arm has been developed for safety and facility in live working on distribution lines but not widely supplied. In this paper we will introduce development cases of support arm and manipulator robot for live working on distribution lines.

  • PDF

Robotic Peg-in-Hole Assembly by Hand Arm Coordination (손과 팔의 협업에 의한 로봇 펙인홀 작업)

  • Park, Hyeonjun;Kim, Peter Ki;Park, Jaeheung;Jang, Ja-Ram;Shin, Yong-Deuk;Bae, Ji-Hun;Park, Jae-Han;Baeg, Moon-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.42-51
    • /
    • 2015
  • Peg-in-hole assembly is the most representative task for a robot to perform under contact conditions. Various strategies for accomplishing the peg-in-hole task with a robot exist, but the existing strategies are not sufficiently practical to be used for various assembly tasks in a human environment because they require additional sensors or exclusive tools. In this paper, the peg-in-hole assembly experiment is performed with anthropomorphic hand arm robot without extra sensors or devices using "intuitive peg-in-hole strategy". From this work, the probability of applying the peg-in-hole strategy to a common assembly task is verified.

A study on Real-Time Implementation of Robust Control for Horizontal Articulated Arm with Eight Axis

  • Nguyen, Hoo-Cong;Kim, Jun-Hong;Lee, Hee-Seop
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.139-149
    • /
    • 2015
  • In this paper, we describe a new approach to perform real-time implementation of an robust controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for robot manipulator consisting of dual arm with eight degrees of freedom at the joint space and cartesian space.

Applying Cases of Manipulator for Live Working on Internal and External Distribution Lines (국내외 배전 활선작업 Manipulator 적용현황)

  • Kim, Jae-Hoon;Kim, Seung-Ho;Kim, Dae-Sik;Park, Kang-Sik;Lee, Heung-Ho;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07e
    • /
    • pp.118-120
    • /
    • 2005
  • Nowadays, economical and social environments are changing to the type of an advanced country for development of techniques in power industry. So most of workers are recently avoiding the 3D works and asking for safety of working environment, etc. in highly dangerous parts such as hot line working on distribution lines, especially. Therefore, most advanced countries are using the support-arm or robotic systems on distribution line works for securing the construction reliability, economical feasibility and protection of linemen from the electric shock and so forth. In special Japanese electric power companies are using the robotic system named manipulator. In Korea, a support-arm has been developed for safety and facility in live working on distribution lines but not widely supplied. In this paper we will introduce development cases of support arm and manipulator robot for live working on distribution lines.

  • PDF

A Robust Adaptive Control of Dual Arm Robot with Eight-Joints Based on DSPs (DSPs 기반 8축 듀얼암 로봇의 견실적응제어)

  • Han, Sung-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1220-1230
    • /
    • 2006
  • In this paper, we propose a flew technique to the design and real-time control of an adaptive controller for robotic manipulator based on digital signal processors. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved Lyapunov second method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot manipulator with eight joints. joint space and cartesian space.

Development of a Single-Arm Robotic System for Unloading Boxes in Cargo Truck (간선화물의 상자 하차를 위한 외팔 로봇 시스템 개발)

  • Jung, Eui-Jung;Park, Sungho;Kang, Jin Kyu;Son, So Eun;Cho, Gun Rae;Lee, Youngho
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.417-424
    • /
    • 2022
  • In this paper, the developed trunk cargo unloading automation system is introduced, and the RGB-D sensor-based box loading situation recognition method and unloading plan applied to this system are suggested. First of all, it is necessary to recognize the position of the box in a truck. To do this, we first apply CNN-based YOLO, which can recognize objects in RGB images in real-time. Then, the normal vector of the center of the box is obtained using the depth image to reduce misrecognition in parts other than the box, and the inner wall of the truck in an image is removed. And a method of classifying the layers of the boxes according to the distance using the recognized depth information of the boxes is suggested. Given the coordinates of the boxes on the nearest layer, a method of generating the optimal path to take out the boxes the fastest using this information is introduced. In addition, kinematic analysis is performed to move the conveyor to the position of the box to be taken out of the truck, and kinematic analysis is also performed to control the robot arm that takes out the boxes. Finally, the effectiveness of the developed system and algorithm through a test bed is proved.

Tele-robotic Application for Nozzle Dam Maintenance Operation in Nuclear Power Plants

  • Seo, Yong-Chil;Kim, Chang-Hoi;Cho, Jae-Wan;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1520-1524
    • /
    • 2004
  • This paper describes the development of a robotic maintenance system for use in a maintenance operation of the nozzle dam in a water chamber of a steam generator at the Kori nuclear power plant in Korea. The robotic maintenance system was designed to minimize the personnel exposure to a hazardous radioactive environment. This robotic maintenance system is operated by a teleoperated control which was designed to perform the nozzle dam maintenance tasks in a remote manner without endangering the human workers. Specific maintenance tasks involve the transportation, insertion, and removal of nozzle dams in a water chamber inside a steam generator via a narrow man-way entrance port. The developed robotic maintenance system has two major subsystems: a two degrees of freedom guiding device acting as the main guiding arm and a master-slave manipulator with a kinematic dissimilarity. The mechanical design considerations, control system, and capabilities of the robotic maintenance system are presented. Finally, a graphical representation of the nozzle dam maintenance processes in a simulated work environment are also demonstrated.

  • PDF