• Title/Summary/Keyword: robotic agent

Search Result 27, Processing Time 0.023 seconds

Development of BioRobot System Based on Mobile Agent for Clinical Laboratory (임상병리검사를 위한 모바일 에이전트 기반의 바이오로봇 시스템 개발)

  • Choi, Byung-June;Jin, Sung-Moon;Sin, Seung-Hun;Koo, Ja-Choon;Kim, Min-Chul;Kim, Jin-Hyun;Son, Woong-Hee;Ahn, Ki-Tak;Chung, Wan-Kyun;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.4
    • /
    • pp.317-326
    • /
    • 2007
  • Recently, robotic automation in clinical laboratory becomes of keen interest as a fusion of bio and robotic technology. In this paper, we present a new robotic platform for clinical tests suitable for small or medium sized laboratories using mobile robots. The mobile robot called Mobile Agent is designed as transfer system of blood samples, reagents, microplates, and any instruments. Also, the developed mobile agent can perform diverse tests simultaneously based on its cooperative and distributed ability. The driving circuits for the mobile agent are embedded in the robot, and each mobile agent communicates with other agents by using Bluetooth communication. The RFID system is used to recognize patient information. Also, the magnetic hall sensor is embedded to remove and compensate the cumulated error of locomotion at the bottom of mobile agent. The proposed mobile agent can be easily used for various applications because it is designed to be compatible with general software development tools. The Mobile agents are manufactured, and feasibility of the robot and localization of the agents using magnetic hall sensor are validated by preliminary experiments.

  • PDF

Agent-based Mobile Robotic Cell Using Object Oriented & Queuing Petri Net Methods in Distribution Manufacturing System

  • Yoo, Wang-Jin;Cho, Sung-Bin
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.114-125
    • /
    • 2003
  • In this paper, we deal with the problem of modeling of agent-based robot manufacturing cell. Its role is becoming increasingly important in automated manufacturing systems. For Object Oriented & Queueing Petri Nets (OO&QPNs), an extended formalism for the combined quantitative and qualitative analysis of different systems is used for structure and performance analysis of mobile robotic cell. In the case study, the OO&QPN model of a mobile robotic cell is represented and analyzed, considering multi-class parts, non-preemptive priority and alternative routing. Finally, the comparison of performance values between Shortest Process Time (SPT) rule and First Come First Serve (FCFS) rule is suggested. In general, SPT rule is most suitable for parts that have shorter processing time than others.

Robotic Agent Design and Application in the Ubiquitous Intelligent Space (유비쿼터스 지능형 공간에서의 로봇 에이전트 설계 및 응용)

  • Yoon Han-Ul;Hwang Se-Hee;Kim Dae-Wook;Lee Doong-Hoon;Sim Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1039-1044
    • /
    • 2005
  • This paper presents a robotic agent design and application in the ubiquitous intelligent space. We set up an experimental environment with Bluetooth host, Bluetooth client, furniture and home appliance, and robotic agents. First, the agents basically performed patrol guard to detect unexpected penetration, and to keep home safely from gas-leakage, electric leakage, and so on. They were out to patrol fur a robbery while navigating in a living room and a private room. In this task, we used an area-based action making and a hexagon-based Q-learning to control the agents. Second, the agents communicate with Bluetooth host device to access and control a home appliance. The Bluetooth host offers a manual control to person by inquiring a client robot when one would like to check some place especially. In this exercise, we organize asynchronous connection less (ACL) between the host and the client robots and control the robot maneuver by Bluetooth host controller interface (HCI).

Bluetooth Network for Group Behavior of Multi-Agent Robotic System

  • Seo, Sang-Wook;Ko, Kwang-Eun;Hwang, Se-Hee;Jang, In-Hun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.17-21
    • /
    • 2007
  • Multi-Agent Robotic System (MARS) is a system that independent autonomous robots in the restricted environments infer their status from pre-assigned conditions and operate their jobs through the cooperation with each other. In the MARS, a robot contains sensor part to percept the situation around themselves, communication part to exchange information, and actuator part to do given work. Especially, in order to cooperate with other robots, communicating with other robots is one of the essential elements. Because Bluetooth has many advantages such as low power consumption, small size module package, and various standard protocols, Bluetooth is rated as one of the efficient communicating technologies which can apply to small-sized robot system. In this paper, we will develop Bluetooth communicating system for autonomous robots. For the purpose, the communication system must have several features-separated module, flexible interface. We will discuss how to construct and what kind of procedure to develop the communicating system.

Path Planning of Swarm Mobile Robots Using Firefly Algorithm (Firefly Algorithm을 이용한 군집 이동 로봇의 경로 계획)

  • Kim, Hue-Chan;Kim, Je-Seok;Ji, Yong-Kwan;Park, Jahng-Hyon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.435-441
    • /
    • 2013
  • A swarm robot system consists of with multiple mobile robots, each of which is called an agent. Each agent interacts with others and cooperates for a given task and a given environment. For the swarm robotic system, the loss of the entire work capability by malfunction or damage to a single robot is relatively small and replacement and repair of the robot is less costly. So, it is suitable to perform more complex tasks. The essential component for a swarm robotic system is an inter-robot collaboration strategy for teamwork. Recently, the swarm intelligence theory is applied to robotic system domain as a new framework of collective robotic system design. In this paper, FA (Firefly Algorithm) which is based on firefly's reaction to the lights of other fireflies and their social behavior is employed to optimize the group behavior of multiple robots. The main application of the firefly algorithm is performed on path planning of swarm mobile robots and its effectiveness is verified by simulations under various conditions.

Distance Measurement System for Distributed Agent Rohotic System (Distributed Agent Robotic System을 위한 거리 측정 시스템)

  • 황세희;황철민;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.297-300
    • /
    • 2004
  • Distributed Agent Robotic System (DARS)은 독립된 로봇 개체들이 스스로 판단하고 행동하는 시스템이다. DARS에서는 각 개체가 주위 환경과 이웃한 개체들의 상태를 인식하고 자신의 처한 환경에 맞게 행동해야 한다. 따라서 DARS 시스템에서는 센서와 같이 주위 환경을 인식하는 시스템이 매우 중요한 역할을 담당한다. 특히 주위의 장애물을 회피하거나 이웃한 개체와의 거리를 측정하기 위한 시스템은 DARS에서는 필수적이다. 물체와의 거리를 판별하기 위해서는 적외선이나 초음파를 이용한 시스템이 많이 사용된다. 본 논문에서는 적외선 센서를 이용한 거리 측정 시스템을 제안한다. 적외선을 쏘고 물체에 반사되어 나오는 적외선의 세기를 이용해서 거리를 측정할 수 있기 때문이다. 또한 DARS의 거리 측정 시에 고려해야 할 환경적인 요인에 대해 알아보고 실험을 통해서 미칠 수 있는 영향력을 측정한다.

  • PDF

Development of a Synthetic Multi-Agent System;The KMITL Cadence 2003 Robotic Soccer Simulation Team, Intelligent and AI Based Control

  • Chitipalungsri, Thunyawat;Jirawatsiwaporn, Chawit;Tangchupong, Thanapon;Kittitornkun, Surin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.879-884
    • /
    • 2004
  • This paper describes the development of a synthetic multi-agent called KMITL Cadence 2003. KMITL Cadence 2003 is a robotic soccer simulation team consisting of eleven autonomous software agents. Each agent operates in a physical soccer simulation model called Robocup Soccer Server which provides fully distributed and real-time multi-agent system environment. All teammates have to cooperate to achieve the common goal of winning the game. The simulation models many aspects of the football field such as noise in ball movements, noisy sensors, unreliable communication channel between teammates and actuators, limited physical abilities and restricted communication. This paper addresses the algorithm to develop the soccer agents to perform basic actions which are scoring, passing ball and blocking the opponents effectively. The result of this development is satisfactory because the successful scoring attempts is increased from 11.1% to 33.3%, successful passing ball attempts is increased from 22.08% to 63.64%, and also, successful intercepting attempts is increased from 88% to 97.73%.

  • PDF

An Action Decision and Execution Method of Robotic Soccer System based on Neural Networks (신경회로망을 이용한 로봇축구 시스템의 행동결정 및 행동실행 방법)

  • Lee, Kyoung-Tae;Kim, Hak-Il;Kim, Choon-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.543-545
    • /
    • 1998
  • Robotic soccer is multi-agent system playing soccer game under given rule. This system consists of three mobile robots, vision sensor, action decision module, action execution module and communication module. This paper presents new action decision method using multi-layer neural networks.

  • PDF

Cognitive and Emotional Structure of a Robotic Game Player in Turn-based Interaction

  • Yang, Jeong-Yean
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.154-162
    • /
    • 2015
  • This paper focuses on how cognitive and emotional structures affect humans during long-term interaction. We design an interaction with a turn-based game, the Chopstick Game, in which two agents play with numbers using their fingers. While a human and a robot agent alternate turn, the human user applies herself to play the game and to learn new winning skills from the robot agent. Conventional valence and arousal space is applied to design emotional interaction. For the robotic system, we implement finger gesture recognition and emotional behaviors that are designed for three-dimensional virtual robot. In the experimental tests, the properness of the proposed schemes is verified and the effect of the emotional interaction is discussed.

A HARMS-based heterogeneous human-robot team for gathering and collecting

  • Kim, Miae;Koh, Inseok;Jeon, Hyewon;Choi, Jiyeong;Min, Byung Cheol;Matson, Eric T.;Gallagher, John
    • Advances in robotics research
    • /
    • v.2 no.3
    • /
    • pp.201-217
    • /
    • 2018
  • Agriculture production is a critical human intensive task, which takes place in all regions of the world. The process to grow and harvest crops is labor intensive in many countries due to the lack of automation and advanced technology. Much of the difficult, dangerous and dirty labor of crop production can be automated with intelligent and robotic platforms. We propose an intelligent, agent-oriented robotic team, which can enable the process of harvesting, gathering and collecting crops and fruits, of many types, from agricultural fields. This paper describes a novel robotic organization enabling humans, robots and agents to work together for automation of gathering and collection functions. The focus of the research is a model, called HARMS, which can enable Humans, software Agents, Robots, Machines and Sensors to work together indistinguishably. With this model, any capability-based human-like organization can be conceived and modeled, such as in manufacturing or agriculture. In this research, we model, design and implement a technology application of knowledge-based robot-to-robot and human-to-robot collaboration for an agricultural gathering and collection function. The gathering and collection functions were chosen as they are some of the most labor intensive and least automated processes in the process acquisition of agricultural products. The use of robotic organizations can reduce human labor and increase efficiency allowing people to focus on higher level tasks and minimizing the backbreaking tasks of agricultural production in the future. In this work, the HARMS model was applied to three different robotic instances and an integrated test was completed with satisfactory results that show the basic promise of this research.