• Title/Summary/Keyword: robot systems

Search Result 3,642, Processing Time 0.034 seconds

Design and development of an automated all-terrain wheeled robot

  • Pradhan, Debesh;Sen, Jishnu;Hui, Nirmal Baran
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.21-39
    • /
    • 2014
  • Due to the rapid progress in the field of robotics, it is a high time to concentrate on the development of a robot that can manoeuvre in all type of landscapes, ascend and descend stairs and sloping surfaces autonomously. This paper presents details of a prototype robot which can navigate in very rough terrain, ascend and descend staircase as well as sloping surface and cross ditches. The robot is made up of six differentially steered wheels and some passive mechanism, making it suitable to cross long ditches and landscape undulation. Static stability of the developed robot have been carried out analytically and navigation capability of the robot is observed through simulation in different environment, separately. Description of embedded system of the robot has also been presented and experimental validation has been made along with some details on obstacle avoidance. Finally the limitations of the robot have been explored with their possible reasons.

Implementation and Control of an Extendable and Separable Mobile Robot Manipulator For Indoor Service (높이 조절 및 하체 분리형 실내용 서비스 이동 로봇의 제작 및 제어)

  • Ahn, Jae-Kook;Jung, Seul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • This paper presents the implementation and control of a mobile manipulator robot for indoor service. The robot has two arms for tasks and a mobile base for mobility. The robot is designed to have several characteristics. Firstly, the robot has the capability of changing the height of the robot. Secondly, the robot can be changed into a balancing mode of two contact points from mobile mode of four contact points. The robot has a balancing mode like an inverted pendulum robot as well as mobile robot mode. Lastly, as a novel concept, the robot is designed to have the capability of separating into two systems, the robot ann and the mobile robot as well. The mobile base can be separately used for a cleaning service.

A Virtual Machine for a Modularized Personal Robot Controller

  • Yang, Kwang-Woong;Kim, Hongseok;Park, Jaehyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.109.4-109
    • /
    • 2002
  • $\textbullet$ modularized personal robot controller $\textbullet$ module interface $\textbullet$ The structure of the virtual machine $\textbullet$ RPL (Robot Programming Language) $\textbullet$ compiler $\textbullet$ Port Configuration $\textbullet$ API

  • PDF

Kinematic Iidentification for Improving Robot Accuracy (로보트 accuracy향상을 위한 kinematic identification)

  • 조선휘;김문상;김귀식;장현상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.131-137
    • /
    • 1989
  • The effect of kinematic model choice on robot calibration is examined. This paper presents a complete formulation to identify the actual robot kinematic parameters directly from position data. The method presented in this paper applies to any serial link manipulator with arbitrary order and combination of revolute and prismatic joint.

  • PDF

Trajectory generation for mobile robot (이동 로보트를 위한 궤적 계획방법)

  • 정일호;임준홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.25-30
    • /
    • 1992
  • In this paper, the problem of trajectory generation for mobile robots is investigated. The robot trajectory is generated so that smooth turns are guaranteed. Also the kinematic constraints of the actual robot are considered and incorporated in the trajectory generation.

  • PDF

Intelligent robot system (지능 로보트 시스템)

  • 정명진;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.21-25
    • /
    • 1986
  • An intelligent robot system can be regarded as the most generalized machine system that can perform a variety of tasks under unpredictable and unstructured environment with some intelligence. Robotics research topics related to four functions of the intelligent robot system are discussed. Also current research activities in Japan and Korea are discussed briefly.

  • PDF

Indoor Localization Scheme of a Mobile Robot Applying REID Technology (RFID 응용 기술을 이용한 이동 로봇의 실내 위치 추정)

  • Kim Sung-Bu;Lee Dong-Hui;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.996-1001
    • /
    • 2005
  • Recently, with the development of service robots and with the new concept of ubiquitous world, the position estimation of mobile objects has been raised to an important problem. As pre-liminary research results, some of the localization schemes are introduced, which provide the relative location of the moving objects subjected to accumulated errors. To implement a real time localization system, a new absolute position estimation method for a mobile robot in indoor environment is proposed in this paper. Design and implementation of the localization system comes from the usage of active beacon systems (based upon RFID technology). The active beacon system is composed of an RFID receiver and an ultra-sonic transmitter: 1. The RFID receiver gets the synchronization signal from the mobile robot and 2. The ultra-sonic transmitter sends out the traveling signal to be used for measuring the distance. Position of a mobile robot in a three dimensional space can be calculated basically from the distance information from. Three beacons and the absolute position information of the beacons themselves. In some case, the mobile robot can get the ultrasonic signals from only one or two beacons, because of the obstacles located along the moving path. Therefore, in this paper, as one of our dedicated contribution, the position estimation scheme with less than three sensors has been developed. Also, the extended Kalman filter algorithm is applied for the improvement of position estimation accuracy of the mobile robot.

Tracking Path Generation of Mobile Robot for Interrupting Human Behavior (행동차단을 위한 이동로봇의 추적경로 생성)

  • Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.460-465
    • /
    • 2013
  • In this paper, we describe a security robot system to control human's behavior in the security area. In order to achieve these goals, we present a method for representing, tracking and human blocking by laserscanner systems in security area, with application to pedestrian tracking in a crowd. When it detects walking human who is for the security area, robot calculates his velocity vector, plans own path to forestall and interrupts him who want to head restricted area and starts to move along the estimated trajectory. While moving the robot continues these processes for adapting change of situation. After arriving at an opposite position human's walking direction, the robot advises him not to be headed more and change his course. The experimental results of estimating and tracking of the human in the wrong direction with the mobile robot are presented.

Behavior Learning and Evolution of Individual Robot for Cooperative Behavior of Swarm Robot System (군집 로봇의 협조 행동을 위한 로봇 개체의 행동학습과 진화)

  • Sim, Kwee-Bo;Lee, Dong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.131-137
    • /
    • 2006
  • In swarm robot systems, each robot must behaves by itself according to the its states and environments, and if necessary, must cooperates with other robots in order to carry out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, the new learning and evolution method based on reinforcement learning having delayed reward ability and distributed genetic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. Reinforcement learning having delayed reward is still useful even though when there is no immediate reward. And by distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the performance of evolution, selective crossover using the characteristic of reinforcement learning is adopted in this paper. we verify the effectiveness of the proposed method by applying it to cooperative search problem.

Development of wall climbing robot using vacuum adsorption with legged type movement (진공 흡착과 보행형 이동에 의한 벽면이동 로봇의 개발)

  • Park, Soo-Hyun;Seo, Kyeong-Jun;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.344-349
    • /
    • 2017
  • Wall-climbing robots have been developed for various purposes, such as cleaning skyscraper windows, maintaining large structures, and welding vessels. Conventional wall-climbing robots use movement systems based on wheels or legs. However, wheeled robots suffer from slipping effects, while legged systems require many actuators and control systems for the complex linkage structure, which also increases the weight of the robot. To overcome these disadvantages, we propose a new wall-climbing robot that walks based on gorilla locomotion. The proposed robot consists of a DC drive motor, a vacuum pump for adsorption, and a micro controller for controlling the system. The performance of the robot was experimentally verified on vertical and horizontal flat surfaces. The robot could be used for various functions in industrial sites or disaster areas.