• Title/Summary/Keyword: robot systems

Search Result 3,642, Processing Time 0.032 seconds

Japanese Speech Based Fuzzy Man-Machine Interface of Manipulators

  • Izumi, Kiyotaka;Watanabe, Keigo;Tamano, Yuya;Kiguchi, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.603-608
    • /
    • 2003
  • Recently, personal robots and home robots are developing by many companies and research groups. It is considered that a general effective interface for user of those robots is speech or voice. In this paper, Japanese speech based man-machine interface system is discussed for reflecting the fuzziness of natural language on robots, by using fuzzy reasoning. The present system consists of the derivation part of action command and the modification part of the derived command. In particular, a unique problem of Japanese is solved by applying the morphological analyzer ChaSen. The proposed system is applied for the motion control of a robot manipulator. It is proved from the experimental results that the proposed system can easily modify the same voice command to the actual different levels of the command, according to the current state of the robot.

  • PDF

Neurointerface Using an Online Feedback-Error Learning Based Neural Network for Nonholonomic Mobile Robots

  • Lee, Hyun-Dong;Watanabe, Keigo;Jin, Sang-Ho;Syam, Rafiuddin;Izumi, Kiyotaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.330-333
    • /
    • 2005
  • In this study, a method of designing a neurointerface using neural network (NN) is proposed for controlling nonholonomic mobile robots. According to the concept of virtual master-slave robots, in particular, a partially stable inverse dynamic model of the master robot is acquired online through the NN by applying a feedback-error learning method, in which the feedback controller is assumed to be based on a PD compensator for such a nonholonomic robot. A tracking control problem is demonstrated by some simulations for a nonholonomic mobile robot with two-independent driving wheels.

  • PDF

Control of Flexible Joint Robot Using Direct Adaptive Neural Networks Controller

  • Lee, In-Yong;Tack, Han-Ho;Lee, Sang-Bae;Park, Boo-Kwi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.29-34
    • /
    • 2001
  • This paper is devoted to investigating direct adaptive neural control of nonlinear systems with uncertain or unknown dynamic models. In the direct adaptive neural networks control area, theoretical issues of the existing backpropagation-based adaptive neural networks control schemes. The major contribution is proposing the variable index control approach, which is of great significance in the control field, and applying it to derive new stable robust adaptive neural network control schemes. This new schemes possess inherent robustness to system model uncertainty, which is not required to satisfy any matching condition. To demonstrate the feasibility of the proposed leaning algorithms and direct adaptive neural networks control schemes, intensive computer simulations were conducted based on the flexible joint robot systems and functions.

  • PDF

Action Selections for an Autonomous Mobile Robot by Artificial Immune Network (인공면역망에 의한 자율이동로봇의 행동 선택)

  • 한상현;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.532-532
    • /
    • 2000
  • Conventional artificial intelligence systems are not properly responding under dynamically changing environments. To overcome this problem, reactive planning systems implementing new Al principles, called behavior-based Al or emergent computation, have been proposed and confirmed their usefulness. As another alternative, biological information processing systems may provide many feasible ideas to these problems. Immune system, among these systems, plays important roles to maintain its own system against dynamically changing environments. Therefore, immune system would provide a new paradigm suitable for dynamic problem dealing with unknown environments. In this paper, a new approach to behavior-based Al by paying attention to biological immune system is investigated. The feasibility of this method is confirmed by applying to behavior control of an autonomous mobile robot in cluttered environment.

  • PDF

Experimental Research on the Characteristics of Indoor Positioning Systems and Mobile Robot Navigation (실내용 위치센서의 특성과 이동로봇의 주행제어에 관한 실험적 연구)

  • Ahn, Jae-Wan;Jin, Ji-Yong;Chung, Woo-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.231-239
    • /
    • 2010
  • For indoor mobile robots, the performance of autonomous navigation is affected by a variety of factors. In this paper, we focus on the characteristics of indoor absolute positioning systems. Two commercially available sensor systems are experimentally tested under various conditions. Mobile robot navigation experiments were carried out, and the results show that resultant performance of navigation is highly dependent upon the characteristics of positioning systems. The limitations and characteristics of positioning systems are analyzed from both quantitative and qualitative point of view. On the basis of the analysis, the relationship between the positioning system characteristics and the controller design are presented.

Systems Engineering-based Manipulator System Development for Pipetting Automation (피펫팅 자동화를 위한 시스템엔지니어링 기반 매니퓰레이터 시스템 개발)

  • Su Ho, Kim;Jeong Hyun, Han;Ki Tae, Nam;Jun Kyeong, Kim;Seong Hun, Hong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.126-139
    • /
    • 2022
  • The need for synthetic automation is increasing in preparation for a gradual decrease in laboratory research manpower due to low birth rate and aging. In this study, the existing laboratory synthesis method is analyzed based on the systems engineering technique. Then, it led to the derivation of the system requirements for a fixed-based robot manipulator capable of recognition, decision and control. The robot is equipped with replaceable modular end-effectors and designed depending on the purpose and process of the synthesis. The robot with an end-effector was implemented as PoC(Proof-of-Concept), and the functions for pipetting automation was verified.

Application of Multiple Fuzzy-Neuro Controllers of an Exoskeletal Robot for Human Elbow Motion Support

  • Kiguchi, Kazuo;Kariya, Shingo;Wantanabe, Keigo;Fukude, Toshio
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 2002
  • A decrease in the birthrate and aging are progressing in Japan and several countries. In that society, it is important that physically weak persons such as elderly persons are able to take care of themselves. We have been developing exoskeletal robots for human (especially for physically weak persons) motion support. In this study, the controller controls the angular position and impedance of the exoskeltal robot system using multiple fuzzy-neuro controllers based on biological signals that reflect the human subject's intention. Skin surface electromyogram (EMG) signals and the generated wrist force by the human subject during the elbow motion have been used as input information of the controller. Since the activation level of working muscles tends to vary in accordance with the flexion angle of elbow, multiple fuzzy-neuro controllers are applied in the proposed method. The multiple fuzzy-neuro controllers are moderately switched in accordance with the elbow flexion angle. Because of the adaptation ability of the fuzzy-neuro controllers, the exoskeletal robot is flexible enough to deal with biological signal such as EMG. The experimental results show the effectiveness of the proposed controller.

Probabilistic Neural Network Based Learning from Fuzzy Voice Commands for Controlling a Robot

  • Jayawardena, Chandimal;Watanabe, Keigo;Izumi, Kiyotaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2011-2016
    • /
    • 2004
  • Study of human-robot communication is one of the most important research areas. Among various communication media, any useful law we find in voice communication in human-human interactions, is significant in human-robot interactions too. Control strategy of most of such systems available at present is on/off control. These robots activate a function if particular word or phrase associated with that function can be recognized in the user utterance. Recently, there have been some researches on controlling robots using information rich fuzzy commands such as "go little slowly". However, in those works, although the voice command interpretation has been considered, learning from such commands has not been treated. In this paper, learning from such information rich voice commands for controlling a robot is studied. New concepts of the coach-player model and the sub-coach are proposed and such concepts are also demonstrated for a PA-10 redundant manipulator.

  • PDF

A Direct Adaptive Fuzzy Control of Nonlinear Systems with Application to Robot Manipulator Tracking Control

  • Cho, Young-Wan;Seo, Ki-Sung;Lee, Hee-Jin
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.630-642
    • /
    • 2007
  • In this paper, we propose a direct model reference adaptive fuzzy control (MRAFC) for MIMO nonlinear systems whose structure is represented by the Takagi-Sugeno fuzzy model. The adaptive law of the MRAFC estimates the approximation error of the fuzzy logic system so that it provides asymptotic tracking of the reference signal for the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal. To verify the validity and effectiveness of the MRAFC scheme, the suggested analysis and design techniques are applied to the tracking control of robot manipulator and simulation studies are carried out. In the control design, the MRAFC is combined with feedforward PD control to make the actual joint trajectories of the robot manipulator with system uncertainties track the desired reference joint position trajectories asymptotically stably.

Experimental Studies of Real- Time Decentralized Neural Network Control for an X-Y Table Robot

  • Cho, Hyun-Taek;Kim, Sung-Su;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.185-191
    • /
    • 2008
  • In this paper, experimental studies of a neural network (NN) control technique for non-model based position control of the x-y table robot are presented. Decentralized neural networks are used to control each axis of the x-y table robot separately. For an each neural network compensator, an inverse control technique is used. The neural network control technique called the reference compensation technique (RCT) is conceptually different from the existing neural controllers in that the NN controller compensates for uncertainties in the dynamical system by modifying desired trajectories. The back-propagation learning algorithm is developed in a real time DSP board for on-line learning. Practical real time position control experiments are conducted on the x-y table robot. Experimental results of using neural networks show more excellent position tracking than that of when PD controllers are used only.