• Title/Summary/Keyword: robot systems

Search Result 3,640, Processing Time 0.032 seconds

Grading meat quality of Hanwoo based on SFTA and AdaBoost (SFTA와 AdaBoost 기반 한우의 육질 등급 분석)

  • Cho, Hyunhak;Kim, Eun Kyeong;Jang, Eunseok;Kim, Kwang Baek;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.433-438
    • /
    • 2016
  • This paper proposes a grade prediction method to measure meat quality in Hanwoo (Korean Native Cattle) using classification and feature extraction algorithms. The applied classification algorithm is an AdaBoost and the texture features of the given ultrasound images are extracted using SFTA. In this paper, as an initial phase, we selected ultrasound images of Hanwoo for verifying experimental results; however, we ultimately aimed to develop a diagnostic decision support system for human body scan using ultrasound images. The advantages of using ultrasound images of Hanwoo are: accurate grade prediction without butchery, optimizing shipping and feeding schedule and economic benefits. Researches on grade prediction using biometric data such as ultrasound images have been studied in countries like USA, Japan, and Korea. Studies have been based on accurate prediction method of different images obtained from different machines. However, the prediction accuracy is low. Therefore, we proposed a prediction method of meat quality. From the experimental results compared with that of the real grades, the experimental results demonstrated that the proposed method is superior to the other methods.

QRAS-based Algorithm for Omnidirectional Sound Source Determination Without Blind Spots (사각영역이 없는 전방향 음원인식을 위한 QRAS 기반의 알고리즘)

  • Kim, Youngeon;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.91-103
    • /
    • 2022
  • Determination of sound source characteristics such as: sound volume, direction and distance to the source is one of the important techniques for unmanned systems like autonomous vehicles, robot systems and AI speakers. There are multiple methods of determining the direction and distance to the sound source, e.g., using a radar, a rider, an ultrasonic wave and a RF signal with a sound. These methods require the transmission of signals and cannot accurately identify sound sources generated in the obstructed region due to obstacles. In this paper, we have implemented and evaluated a method of detecting and identifying the sound in the audible frequency band by a method of recognizing the volume, direction, and distance to the sound source that is generated in the periphery including the invisible region. A cross-shaped based sound source recognition algorithm, which is mainly used for identifying a sound source, can measure the volume and locate the direction of the sound source, but the method has a problem with "blind spots". In addition, a serious limitation for this type of algorithm is lack of capability to determine the distance to the sound source. In order to overcome the limitations of this existing method, we propose a QRAS-based algorithm that uses rectangular-shaped technology. This method can determine the volume, direction, and distance to the sound source, which is an improvement over the cross-shaped based algorithm. The QRAS-based algorithm for the OSSD uses 6 AITDs derived from four microphones which are deployed in a rectangular-shaped configuration. The QRAS-based algorithm can solve existing problems of the cross-shaped based algorithms like blind spots, and it can determine the distance to the sound source. Experiments have demonstrated that the proposed QRAS-based algorithm for OSSD can reliably determine sound volume along with direction and distance to the sound source, which avoiding blind spots.

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.

Implementation of Agricultural Multi-UAV System with Distributed Swarm Control Algorithm into a Simulator (분산군집제어 알고리즘 기반 농업용 멀티 UAV 시스템의 시뮬레이터 구현)

  • Ju, Chanyoung;Park, Sungjun;Son, Hyoung Il
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.37-38
    • /
    • 2017
  • 최근 방제 및 예찰과 같은 농작업에 단일 UAV(Unmanned Aerial Vehicle)시스템이 적용되고 있지만, 가반하중과 체공시간 등 기존시스템의 문제가 점차 대두되면서 작업 시간을 보다 단축시키고 작업 효율을 극대화 할 수 있는 농업용 멀티 UAV시스템의 필요성이 증대되고 있다. 본 논문에서는 작업자가 다수의 농업용 UAV를 효과적으로 제어할 수 있는 분산군집제어 알고리즘을 제안하며 알고리즘 검증 및 평가를 위한 시뮬레이터를 소개한다. 분산군집제어는 UAV 제어 계층, VP(Virtual Point) 제어 계층, 원격제어 계층으로 이루어진 3계층 제어구조를 가진다. UAV 제어 계층에서 각 UAV는 point mass로 모델링 되는 VP의 이상적인 경로를 추종하도록 제어한다. VP 제어 계층에서 각 VP는 입력 $p_i(t)=u^c_i+u^o_i+u^{co}_i+u^h_i$-(1)을 받아 제어되는데 여기서, $u^c_i{\in}{\mathbb{R}}^3$는 VP 사이의 충돌방지제어, $u^o_i{\in}{\mathbb{R}}^3$는 장애물과의 충돌방지제어, $u^{co}_i{\in}{\mathbb{R}}^3$는 UAV 상호간의 협조제어, $u^h_i{\in}{\mathbb{R}}^3$는 작업자로부터의 원격제어명령이다. (1)의 제어입력에서 충돌방지제어는 각 $u^i_c:=-{\sum\limits_{j{\in}{\eta}_i}}{\frac {{\partial}{\phi}_{ij}^c({\parallel}p_i-p_j{\parallel})^T}{{\partial}p_i}}$-(2), $u^o_c:=-{\sum\limits_{r{\in}O_i}}{\frac {{\partial}{\phi}_{ir}^o({\parallel}p_i-p^o_r{\parallel})^T}{{\partial}p_i}}$-(3)로 정의되면 ${\phi}^c_{ij}$${\phi}^o_{ir}$는 포텐셜 함수를 나타낸다. 원격제어 계층에서 작업자는 햅틱 인터페이스를 통해 VP의 속도를 제어하게 된다. 이때 스케일변수 ${\lambda}$에 대하여 VP의 원격제어명령은 $u^t_i(t)={\lambda}q(t)$로 정의한다. UAV 시뮬레이터는 리눅스 환경에서 ROS(Robot Operating Systems)를 기반한 3차원 시뮬레이터인 Gazebo상에 구축하였으며, 마스터와 슬레이브 간의 제어 명령은 TCPROS를 통해 서로 주고받는다. UAV는 PX4 기반의 3DR Solo 모델을 사용하였으며 MAVROS를 통해 MAVLink 통신 프로토콜에 접속하여 UAV의 고도, 속도 및 가속도 등의 상태정보를 받을 수 있다. 현재 멀티 드론 시스템을 Gazebo 환경에 구축하였으며, 추후 시뮬레이터 상에 분산군집제어 알고리즘을 구현하여 검증 및 평가를 진행하고자 한다.

  • PDF

A study on the characteristics of intelligent sawing system for band saw (띠톱기계의 스마트 톱 절삭 시스템의 특성에 관한연구)

  • LUO, luPing;DING, zelin;DING, shengxia;JIANG, Ping;FAN, li;XIAO, leihua;PAN, bosong;An, Boyoung;Eum, Younseal;Han, Changsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.195-204
    • /
    • 2020
  • To help solve the problems of how to set the optimal sawing force and the optimal controller parameters for different sawing conditions, a mathematical model of a proposed sawing system was established according to the principle of sawing force control. The conventional PID control method was then used for further research of the closed-loop control of the sawing force. Finally, through simulation and experimental research, the influence rule of the controller parameters and sawing load on the control performance and the relationships between the sawing width and controller parameters (proportion coefficient) and the sawing force setting value were obtained, from which a system scheme for intelligent sawing control of a band sawing machine was proposed. The research shows that the sawing efficiency of the intelligent sawing system was 18.1 (48%) higher than that of the original sawing system when sawing a grooved section sawing material, which verifies the good control effect of the proposed scheme.

Development of Small-sized Model of Ray-type Underwater Glider and Performance Test (Ray형 수중글라이더 소형 축소모델 개발 및 성능시험)

  • Choi, Hyeung-sik;Lee, Sung-wook;Kang, Hyeon-seok;Duc, Nguyen Ngoc;Kim, Seo-kang;Jeong, Seong-hoon;Chu, Peter C.;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.537-543
    • /
    • 2017
  • Underwater glider is the long-term operating underwater robot that was developed with a purpose of continuous oceanographic observations and explorations. Torpedo-type underwater glider is not efficient from an aspect of maneuverability, because it uses a single buoyancy engine and motion controller for obtaining propulsive forces and moments. This paper introduces a ray-type underwater glider(RUG) with dual buoyancy engine, which improves the control performance of buoyancy and motion compared with torpedo-type underwater glider. Carrying out Computational Fluid Dynamics (CFD) analysis as static pitch drift test, the performance of fluid resistance for gliding motion was identified. Based on the calculated hydrodynamic coefficients, the dynamic simulation compared and analyzed the motion performance of torpedo-type and ray-type while controlling same volume of buoyancy engine. Small-sized model of RUG was developed to perform fundamental performance tests.

The 4th.industrial revolution and Korean university's role change (4차산업혁명과 한국대학의 역할 변화)

  • Park, Sang-Kyu
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.1
    • /
    • pp.235-242
    • /
    • 2018
  • The interest about 4th Industrial Revolution was impressively increased from newspapers, iindustry, government and academic sectors. Especially AI what could be felt by the skin of many peoples, already overpassed the ability of the human's even in creative areas. Namely, now many people start fo feel that the effect of the revolution is just infront of themselves. There were several issues in this trend, the ability of deep learning by machine, the identity of the human, the change of job environment and the concern about the social change etc. Recently many studies have been made about the 4th industrial revolution in many fields like as AI(artificial intelligence), CRISPR, big data and driverless car etc. As many positive effects and pessimistic effects are existed at the same time and many preventing actions are being suggested recently, these opinions will be compared and analyzed and better solutions will be found eventually. Several educational, political, scientific, social and ethical effects and solutions were studied and suggested in this study. Clear implication from the study is that the world we will live from now on is changing faster than ever in the social, industrial, political and educational environment. If it will reform the social systems according to those changes, a society (nation or government) will grasp the chance of its development or take-off, otherwise, it will consume the resources ineffectively and lose the competition as a whole society. But the method of that reform is not that apparent in many aspects as the revolution is progressing currently and its definition should be made whether in industrial or scientific aspect. The person or nation who will define it will have the advantage of leading the future of that business or society.

A Study on the Development of an Automated Freeform Fabrication System and Construction Materials (자동화 적층 시공 시스템 및 재료 개발에 관한 연구)

  • Jeon, Kwang Hyun;Park, Min-Beom;Kang, Min-Kyung;Kim, Jung-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1665-1673
    • /
    • 2013
  • Recently, the interest and demand on free formed structure providing aesthetic value as well as functionality has been increasing. Formwork has numerous advantages such as high strength, convenience, accuracy and good quality of surface roughness. Nevertheless, it increases construction cost and period to build complex shapes. For these purpose, deposition construction systems such as Contour Crafting and Concrete Printing have been developed with active collaboration between university and industry by applying the rapid prototyping technology to the construction industry in USA and England. Since there has been no related research in Korea, the possibility of spin-off technology and its fusion cannot be expected. In this paper, design elements including mechanical system and control system related to automatic deposition construction system prototype for constructing a free curved structure without mold are described. As for an appropriate material for the system, fiber reinforced mortar was selected by experiments on compressive strength, fluidity, viscosity and setting time. By performing transfer and extrusion experiments, the possibility of the development of deposition construction system was demonstrated. Based on this research results, it is required to keep the automatic deposition construction system improve and extend it into the new application area in construction industry.

A Methodology of Decision Making Condition-based Data Modeling for Constructing AI Staff (AI 참모 구축을 위한 의사결심조건의 데이터 모델링 방안)

  • Han, Changhee;Shin, Kyuyong;Choi, Sunghun;Moon, Sangwoo;Lee, Chihoon;Lee, Jong-kwan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.237-246
    • /
    • 2020
  • this paper, a data modeling method based on decision-making conditions is proposed for making combat and battlefield management systems to be intelligent, which are also a decision-making support system. A picture of a robot seeing and perceiving like humans and arriving a point it wanted can be understood and be felt in body. However, we can't find an example of implementing a decision-making which is the most important element in human cognitive action. Although the agent arrives at a designated office instead of human, it doesn't support a decision of whether raising the market price is appropriate or doing a counter-attack is smart. After we reviewed a current situation and problem in control & command of military, in order to collect a big data for making a machine staff's advice to be possible, we propose a data modeling prototype based on decision-making conditions as a method to change a current control & command system. In addition, a decision-making tree method is applied as an example of the decision making that the reformed control & command system equipped with the proposed data modeling will do. This paper can contribute in giving us an insight of how a future AI decision-making staff approaches to us.

Application of CSP Filter to Differentiate EEG Output with Variation of Muscle Activity in the Left and Right Arms (좌우 양팔의 근육 활성도 변화에 따른 EEG 출력 구분을 위한 CSP 필터의 적용)

  • Kang, Byung-Jun;Jeon, Bu-Il;Cho, Hyun-Chan
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.654-660
    • /
    • 2020
  • Through the output of brain waves during muscle operation, this paper checks whether it is possible to find characteristic vectors of brain waves that are capable of dividing left and right movements by extracting brain waves in specific areas of muscle signal output that include the motion of the left and right muscles or the will of the user within EEG signals, where uncertainties exist considerably. A typical surface EMG and noninvasive brain wave extraction method does not exist to distinguish whether the signal is a motion through the degree of ionization by internal neurotransmitter and the magnitude of electrical conductivity. In the case of joint and motor control through normal robot control systems or electrical signals, signals that can be controlled by the transmission and feedback control of specific signals can be identified. However, the human body lacks evidence to find the exact protocols between the brain and the muscles. Therefore, in this paper, efficiency is verified by utilizing the results of application of CSP (Common Spatial Pattern) filter to verify that the left-hand and right-hand signals can be extracted through brainwave analysis when the subject's behavior is performed. In addition, we propose ways to obtain data through experimental design for verification, to verify the change in results with or without filter application, and to increase the accuracy of the classification.