• Title/Summary/Keyword: robot systems

Search Result 3,643, Processing Time 0.04 seconds

Comparative Study on the Educational Use of Home Robots for Children

  • Han, Jeong-Hye;Jo, Mi-Heon;Jones, Vicki;Jo, Jun-H.
    • Journal of Information Processing Systems
    • /
    • v.4 no.4
    • /
    • pp.159-168
    • /
    • 2008
  • Human-Robot Interaction (HRI), based on already well-researched Human-Computer Interaction (HCI), has been under vigorous scrutiny since recent developments in robot technology. Robots may be more successful in establishing common ground in project-based education or foreign language learning for children than in traditional media. Backed by its strong IT environment and advances in robot technology, Korea has developed the world's first available e-Learning home robot. This has demonstrated the potential for robots to be used as a new educational media - robot-learning, referred to as 'r-Learning'. Robot technology is expected to become more interactive and user-friendly than computers. Also, robots can exhibit various forms of communication such as gestures, motions and facial expressions. This study compared the effects of non-computer based (NCB) media (using a book with audiotape) and Web-Based Instruction (WBI), with the effects of Home Robot-Assisted Learning (HRL) for children. The robot gestured and spoke in English, and children could touch its monitor if it did not recognize their voice command. Compared to other learning programs, the HRL was superior in promoting and improving children's concentration, interest, and academic achievement. In addition, the children felt that a home robot was friendlier than other types of instructional media. The HRL group had longer concentration spans than the other groups, and the p-value demonstrated a significant difference in concentration among the groups. In regard to the children's interest in learning, the HRL group showed the highest level of interest, the NCB group and the WBI group came next in order. Also, academic achievement was the highest in the HRL group, followed by the WBI group and the NCB group respectively. However, a significant difference was also found in the children's academic achievement among the groups. These results suggest that home robots are more effective as regards children's learning concentration, learning interest and academic achievement than other types of instructional media (such as: books with audiotape and WBI) for English as a foreign language.

Autonomous Calibration of a 2D Laser Displacement Sensor by Matching a Single Point on a Flat Structure (평면 구조물의 단일점 일치를 이용한 2차원 레이저 거리감지센서의 자동 캘리브레이션)

  • Joung, Ji Hoon;Kang, Tae-Sun;Shin, Hyeon-Ho;Kim, SooJong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.218-222
    • /
    • 2014
  • In this paper, we introduce an autonomous calibration method for a 2D laser displacement sensor (e.g. laser vision sensor and laser range finder) by matching a single point on a flat structure. Many arc welding robots install a 2D laser displacement sensor to expand their application by recognizing their environment (e.g. base metal and seam). In such systems, sensing data should be transformed to the robot's coordinates, and the geometric relation (i.e. rotation and translation) between the robot's coordinates and sensor coordinates should be known for the transformation. Calibration means the inference process of geometric relation between the sensor and robot. Generally, the matching of more than 3 points is required to infer the geometric relation. However, we introduce a novel method to calibrate using only 1 point matching and use a specific flat structure (i.e. circular hole) which enables us to find the geometric relation with a single point matching. We make the rotation component of the calibration results as a constant to use only a single point by moving a robot to a specific pose. The flat structure can be installed easily in a manufacturing site, because the structure does not have a volume (i.e. almost 2D structure). The calibration process is fully autonomous and does not need any manual operation. A robot which installed the sensor moves to the specific pose by sensing features of the circular hole such as length of chord and center position of the chord. We show the precision of the proposed method by performing repetitive experiments in various situations. Furthermore, we applied the result of the proposed method to sensor based seam tracking with a robot, and report the difference of the robot's TCP (Tool Center Point) trajectory. This experiment shows that the proposed method ensures precision.

A study on the improvement of performance of polishing robot attached to machining center (머시닝센터 장착형 연마 로봇의 성능 향상에 관한 연구)

  • 조영길;이민철;전차수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1275-1278
    • /
    • 1997
  • Cutting process has been automated by progress of CNC and CAD/CAM, but polishing process has been depended on only experiential knowledge of expert. To automate the polishing pricess polishing robot with 2 degrees of freedom which is attached to a machining center with 3 degrees of freedom has been developed. this automatic polishing robot is able to keep the polishing tool normal on the curved surface of die to improve a performance of polishing. Polishing task for a curved surface die demands repetitive operation and high precision, but conventional control algorithm can not cope with the problem of disturbance such as a change of load. In this research, we develop robust controller using real time sliding mode algorithm. To obtain gain parameters of sliding model control input, the signal compression method is used to identify polishing robot system. To obtain an effect of 5 degrees of freedom motion, 5 axes NC data for polishing are divided into data of two types for 3 axis machining center and 2 axis polishing are divided into data of two types for 3 axis machining center and 2 axis polishing robot. To find an efficient polishing condition to obtain high quality, various experiments are carried out.

  • PDF

DESIGN AND ANALYSIS FOR THE SPECIAL SERIAL MANIPULATOR

  • Kim, Woo-Sub;Park, Jae-Hong;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1396-1401
    • /
    • 2004
  • In recent years, robot has been used widely in industrial field and has been expanded as a result of continous research and development for high-speed and miniaturization. The goal of this paper is to design the special serial manipulator through the understanding of the structure, mobility, and analysis of serial manipulator. Thereafter we control the position and orientation of end-effector with respect to time. In general, a structure of industrial robot consists of several links connected in series by various types of joints. Typically revolute and prismatic joints. The movement of these joints is determined in inverse kinematic analysis. Compared to the complicated structure of parallel and hybrid robot, open loop system retains the characteristic that each link is independent and is controlled easily by AC servomotor that is used to place the robot end-effector toward the accurate point with the desired speed and power while it is operated by position control algorithm. The robot end-effector should trace the given trajectory within the appropriate time. The trajectory of 3D end-effector model made by OpenGL can be displayed on the monitor program simultaneously

  • PDF

A Study on The Implementation of Stable and High-speed Humanoid Robot (ICCAS 2004)

  • Kim, Seung-Woo;Jung, Yong-Rae;Jang, Kyung-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1440-1443
    • /
    • 2004
  • Most previous robots had used the wheels as means for movement. These structures were relatively simple and easy to control and this is why the method had been used until currently. However, there are many realistic problems to move from one place to another in human life, for instance, steps and edges. So we need to develop the two-legged walking humanoid robot. The 2-legged walking Robot system has been vigorously developed in so many corporations and academic circles of several countries. However, 2-legged walking Robot has been mostly studied in view of the static walk. We design a stable humanoid Robot which can walk in high-speed through the research of the dynamic walk in this paper. Especially, worldwide companies have been interested in developing humanoid robots for a long time to solve the before mentioned problems so that they can become more familiar with the human form. The most important thing, for the novel two-legged walk, is to create a stable and fast walking in two-legged robots. For realization of this movement, an optimal mechanical design of 12 DOFS, a distributed control and a parallel processing control are implemented in this paper. This paper proves that high speed and stable walking can be achieved, through experiments.

  • PDF

Absolute Positioning System for Mobile Robot Navigation in an Indoor Environment (ICCAS 2004)

  • Yun, Jae-Mu;Park, Jin-Woo;Choi, Ho-Seek;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1448-1451
    • /
    • 2004
  • Position estimation is one of the most important functions for the mobile robot navigating in the unstructured environment. Most of previous localization schemes estimate current position and pose of mobile robot by applying various localization algorithms with the information obtained from sensors which are set on the mobile robot, or by recognizing an artificial landmark attached on the wall, or objects of the environment as natural landmark in the indoor environment. Several drawbacks about them have been brought up. To compensate the drawbacks, a new localization method that estimates the absolute position of the mobile robot by using a fixed camera on the ceiling in the corridor is proposed. And also, it can improve the success rate for position estimation using the proposed method, which calculates the real size of an object. This scheme is not a relative localization, which decreases the position error through algorithms with noisy sensor data, but a kind of absolute localization. The effectiveness of the proposed localization scheme is demonstrated through the experiments.

  • PDF

A new human-robot interaction method using semantic symbols

  • Park, Sang-Hyun;Hwang, Jung-Hoon;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2005-2010
    • /
    • 2004
  • As robots become more prevalent in human daily life, situations requiring interaction between humans and robots will occur more frequently. Therefore, human-robot interaction (HRI) is becoming increasingly important. Although robotics researchers have made many technical developments in their field, intuitive and easy ways for most common users to interact with robots are still lacking. This paper introduces a new approach to enhance human-robot interaction using a semantic symbol language and proposes a method to acquire the intentions of robot users. In the proposed approach, each semantic symbol represents knowledge about either the environment or an action that a robot can perform. Users'intentions are expressed by symbolized multimodal information. To interpret a users'command, a probabilistic approach is used, which is appropriate for interpreting a freestyle user expression or insufficient input information. Therefore, a first-order Markov model is constructed as a probabilistic model, and a questionnaire is conducted to obtain state transition probabilities for this Markov model. Finally, we evaluated our model to show how well it interprets users'commands.

  • PDF

Development of Face Robot Actuated by Artificial Muscle

  • Choi, H.R.;Kwak, J.W.;Chi, H.J.;Jung, K.M.;Hwang, S.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1229-1234
    • /
    • 2004
  • Face robots capable of expressing their emotional status, can be adopted as an e cient tool for friendly communication between the human and the machine. In this paper, we present a face robot actuated with arti cial muscle based on dielectric elastomer. By exploiting the properties of polymers, it is possible to actuate the covering skin, and provide human-like expressivity without employing complicated mechanisms. The robot is driven by seven types of actuator modules such as eye, eyebrow, eyelid, brow, cheek, jaw and neck module corresponding to movements of facial muscles. Although they are only part of the whole set of facial motions, our approach is su cient to generate six fundamental facial expressions such as surprise, fear, angry, disgust, sadness, and happiness. Each module communicates with the others via CAN communication protocol and according to the desired emotional expressions, the facial motions are generated by combining the motions of each actuator module. A prototype of the robot has been developed and several experiments have been conducted to validate its feasibility.

  • PDF

Evaluation of Wheel-based Mobile Robot Performance for Simple Environmental Obstacles

  • Hong, Ju-Pyo;Ko, Deo-Hyeon;Rhim, Sung-Soo;Lee, Soon-Geul;Kim, Kyu-Ro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1491-1495
    • /
    • 2004
  • For the evaluation of the mobile robot performance in complex environments, the experimental approach in an actual physical environment has been commonly taken. In the physical experimental approach, however, it is quite difficult to define the proper environment for the evaluation due to the lack of commonly agreed characteristics of the test environment. Particularly the number of combinations of types and physical parameters of the obstacles that the mobile robot is expected to deal with is practically unlimited. In an effort to simplify and improve the effectiveness of the evaluation process, we propose an evaluation method using decomposed environmental elements, where we evaluated the performance of the robot for a small group of simple and decomposed obstacle components, for examples projection and slope, instead of a large group of complicated random obstacles. The paper describes a set of simple obstacle models and performance parameters that we have chosen for the effective evaluation process. As an alternative to the physical experimental evaluation approach, in this paper, we used a virtual evaluation environment where the robot and the physical test environment has been modeled using a commercial multi-body dynamics analysis packaged called RecurDyn.

  • PDF

Design and Experimental Report for the Special 3D.O.F Robot Manipulator

  • Moon, Dong-Hee;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2000-2003
    • /
    • 2003
  • In recent years, robots have been used widely in industrial field and have been expanded as a result of continuous research and development for high-speed and miniaturization. The goal of this paper is to design the serial manipulator through kinematic analysis and to control the position and orientation of end-effector with respect to time. In general, a structure of industrial robot consists of several links connected in series by various types of joints, typically revolute and prismatic joints. The movement of these joints is determined in inverse kinematic analysis. Compared to the complicated structure of parallel and hybrid robot, open loop system retains the characteristic that each link is independent and is controlled easily. AC servo motor is used to place the robot end-effector toward the accurate point with the desired speed and power while it is operated by position control algorithm. The robot end-effector should trace the given trajectory within the appropriate time. The trajectory of end-effector can be displayed on the monitor of general personal computer through Opengl program.

  • PDF