• Title/Summary/Keyword: robot systems

Search Result 3,643, Processing Time 0.028 seconds

Gait Generation Method for a Quadruped Robot with a Waist Joint to Walk on the Slope (허리 관절을 갖는 4족 로봇의 경사면 보행을 위한 걸음새 생성 방법)

  • Kim, Guk-Hwa;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.617-623
    • /
    • 2012
  • In this paper, we propose a gait generation method for a quadruped robot to walk efficiently on the slope, which uses the waist joint of a quadruped robot. We derive the kinematic model of a quadruped robot with waist joint using the Denavit-Hartenberg representation method and the algebraic method. In addition, the gaits are generated based on the wave gait. In the proposed gait generation method, first in order to alleviate the mechanical restriction and the reduction of the stride, we determine the appropriate waist joint angle according to the slope degree, and then decide the location of the tiptoe of a quadruped robot by exploring the workspace. Finally, through computer simulations, we verify the effectiveness and applicability of the proposed method.

Development of a Moving Platform for a Upright Running Mobile Robot Based on an Inverted Pendulum Mechanism (역진자 기구에 기반한 직립주행 가능 이동로봇용 구동 플랫폼 개발)

  • Lee, Se-Han;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.570-576
    • /
    • 2012
  • In this research a moving platform for a mobile robot which can run with upright posture is proposed. It is able to stand with standing arms and run uprightly based on an inverted pendulum mechanism. Conventional mobile robots generally may equip 4 wheels or 3 wheels including a caster and have good statistic stability. They need a steering mechanism to choose which way to go since they have a square or rectangular configuration with multiple wheels. When a mobile robot meets a sharply perpendicular and narrow crossroad, it may need a special steering scheme such as going forward and backward repeatedly or it sometimes cannot even pass through the crossroad because of its size. The proposed moving platform for a mobile robot changes to a upright posture which has a small planar area and is able to pass through the crossroad. We propose a moving platform for a mobile robot with a inverted pendulum mechanism and standing arms which can make the mobile robot upright.

The Implementation of the Intelligent Exoskeleton Robot Arm Using ElectroMiogram(EMG) vital Signal (근전도 생체 신호를 이용한 지능형 외골격 로봇팔의 구현)

  • Jeon, Bu-Il;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.533-539
    • /
    • 2012
  • The purpose of this study is to estimate a validity of control signal through a design of Exoskeleton Robot Arm's capable of intelligent recognition as a human arm's motion by using realtime processed data of generated EMG signals. By an intelligent algorithm, the EMG output value of human biceps and triceps muscles contraction can be recognized and used for the control over exoskeleton arm corresponding to human's recognition and judgement. The EMG sensing data of muscles contraction and relaxation are used as the input signal from human's body to operate the Exoskeleton Robot Arm thus copying human arm motion. An intelligent control of Exoskeleton Robot Arm is to design the analog control circuit which processes the input data, and then to manufacture an integrated control board. And then abstracted signal is passed by DSP signal processing, Fuzzy logic algorithm is designed for a accurate prediction of weight or load through the intelligent algorithm, and design an Exoskeleton Robot Arm to express a human's intention.

Balancing control of one-wheeled mobile robot using control moment gyroscope (제어 모멘트 자이로스코프를 이용한 외바퀴 이동로봇의 균형 자세 제어)

  • Park, Sang-Hyung;Yi, Soo-Yeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.89-98
    • /
    • 2017
  • The control moment gyroscope(CMG) can be used for essential balancing control of a one-wheeled mobile robot. A single-gimbal CMG has a simple structure and can supply strong restoring torque against external disturbances. However, the CMG generates unwanted directional torque also besides the restoring torque; the unwanted directional torque causes instability in the one-wheeled robot control system that has high rotational degrees of freedom. This study proposes a control system for a one-wheeled mobile robot by using a CMG scissored pair to eliminate the unwanted directional torque. The well-known LQR control algorithm is designed for robustness against modeling error in the dynamic motion equations of a one-wheeled robot. Computer simulations for 3D nonlinear dynamic equations are carried out to verify the proposed control system with the CMG scissored pair and the LQR control algorithms.

Monte Carlo Localization for Mobile Robots Under REID Tag Infrastructures (RFID 태그에 기반한 이동 로봇의 몬테카를로 위치추정)

  • Seo Dae-Sung;Lee Ho-Gil;Kim Hong-Suck;Yang Gwang-Woong;Won Dae-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.47-53
    • /
    • 2006
  • Localization is a essential technology for mobile robot to work well. Until now expensive sensors such as laser sensors have been used for mobile robot localization. We suggest RFID tag based localization system. RFID tag devices, antennas and tags are cheap and will be cheaper in the future. The RFID tag system is one of the most important elements in the ubiquitous system and RFID tag will be attached to all sorts of goods. Then, we can use this tags for mobile robot localization without additional costs. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used for identifying mobile robot's location and pose in the smart floor. We discuss a number of challenges related to this approach, such as tag distribution (density and structure), typing and clustering. When a mobile robot localizes in this smart floor, the localization error mainly results from the sensing range of the RFID reader, because the reader just ran know whether a tag is in the sensing range of the sensor. So, in this paper, we suggest two algorithms to reduce this error. We apply the particle filter based Monte Carlo localization algorithm to reduce the localization error. And with simulations and experiments, we show the possibility of our particle filter based Monte Carlo localization in the RFID tag based localization system.

Emotional Behavior Decision Method and Its Experiments of Generality for Applying to Various Social Robot Systems (목적과 사양이 다른 다양한 인간 친화 로봇에 적용하기 위한 감성 행동 생성 방법 및 범용성 실험)

  • Ahn, Ho-Seok;Choi, Jin-Young;Lee, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.54-62
    • /
    • 2011
  • Emotional reaction should be different from the purpose of the robot system. The method for emotional reaction is also different from the specification of the robot system. Therefore, emotional behavior decision model, which is applied to social robots regardless of specifications and purposes, is necessary. This paper introduces a universal emotional behavior decision model designed for applying to various social robots that have different specifications and purposes. Multiple emotions, a set of probability value of every emotion, are calculated independently and expressed according to the purpose of the robot system. Then, behavior, for emotional reaction according to the calculated multiple emotions, is decided regarding the specification of the robot system. The decided behavior is a combination of unit behaviors that indicates the smallest expressible behaviors in each expression parts. It is possible to express various undefined behaviors by generating unit behavior combinations according to multiple emotions. The universal emotional behavior decision model is applied to three kinds of social robot systems that have different specifications and purposes.

Design of a Chain-Type Modular Robot (체인형 모둘러 로봇의 설계)

  • Lee, Bo-Hee;Lee, Sang-Kyung;Kong, Jung-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.674-682
    • /
    • 2009
  • The modular robot is one which was developed to get over limit of the space movement for the mobile robot. The chain type robot in particular is connected by series each other and this form expression method is simple and easy to really make a docking method efficiently. However, the related studies were focused on the movement that used to be combination, and the movement of a cell independent mainly does not consist and have a problem to dock only in a direction, not to be connected with all directions. Therefore, we suggested a modular structure for quick, independent movement to solve such a problem and had own autonomy. In addition, we are intended to get some effectiveness for connection mechanism using one locking motor. In this paper, we dealt with the design for the mechanical and electrical points and docking algorithm including communication method. All of the structure is verified with real action experiment through the shape expressions of various application platform.

Searching Methods of Corresponding Points Robust to Rotational Error for LRF-based Scan-matching (LRF 기반의 스캔매칭을 위한 회전오차에 강인한 대응점 탐색 기법)

  • Jang, Eunseok;Cho, Hyunhak;Kim, Eun Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.505-510
    • /
    • 2016
  • This paper presents a searching method of corresponding points robust to rotational error for scan-matching used for SLAM(Simultaneous Localization and Mapping) in mobile robot. A differential driving mechanism is one of the most popular type for mobile robot. For driving curved path, this type controls the velocities of each two wheels independently. This case increases a wheel slip of the mobile robot more than the case of straight path driving. And this is the reason of a drifting problem. To handle this problem and improves the performance of scan-matching, this paper proposes a searching method of corresponding points using extraction of a closest point based on rotational radius of the mobile robot. To verify the proposed method, the experiment was conducted using LRF(Laser Range Finder). Then the proposed method is compared with an existing method, which is an existing method based on euclidian closest point. The result of our study reflects that the proposed method can improve the performance of searching corresponding points.

Impact of Digital Literacy of Older Adults on Acceptance of Care Robot Technology: Focusing on the Mediating Effect of Technology Self-Efficacy (노인의 디지털 리터러시가 돌봄로봇 기술수용에 미치는 영향: 기술 자기효능감의 매개효과를 중심으로)

  • Lee, Jung Wan;Cha, Eun Gyo;Lee, Hyun Joo;Shin, Hye Ri;Kim, Young Sun
    • The Journal of Information Systems
    • /
    • v.33 no.2
    • /
    • pp.191-218
    • /
    • 2024
  • Purpose This study aims to investigate the relationship between digital literacy and the acceptance of care robots, as well as the mediating role of technology self-efficacy in this relationship. The findings of this research aim to provide foundational data for enhancing older adults' acceptance of new technologies, underscore the significance of bolstering older adults' digital literacy in relation to the adoption of care robot technology, and offer evidence to support interventions aimed at improving technology self-efficacy. Design/methodology/approach This study seeks to investigate the mediating effect of technology self-efficacy on the relationship between digital literacy and acceptance of care robot technology among older adults. Kyunghee University's '2022 Korean Senior Technology Acceptance Panel Survey' was used, targeting 509 people aged 60 or older. Data analysis was performed using SPSS 20.0 software. Independent samples t-tests were used to characterize key variables of interest and correlation analysis was used to evaluate their relationships. To verify the mediation effect, mediation regression analysis along with the Sobel test was used. Findings The study found that improving older adults' digital literacy positively impacts their acceptance of care robot technology through enhanced technology self-efficacy. Active education and experience with digital devices are highlighted as crucial for enhancing older adults' sense of accomplishment and, consequently, their technology self-efficacy. The findings underscore the importance of programs and educational initiatives focused on enhancing digital literacy among older adults to boost technology self-efficacy and increase acceptance of care robot technology within this population.

A Design and Implementation of A Robot Client Middleware for Network-based Intelligent Robot based on Service-Oriented (지능형 네트워크 로봇을 위한 서비스 지향적인 로봇 클라이언트 미들웨어 설계와 구현)

  • Kwak, Dong-Gyu;Choi, Jae-Young
    • The KIPS Transactions:PartA
    • /
    • v.19A no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Network-based intelligent robot is connected with network system, provides interactions with humans, and carries out its own roles on ubiquitous computing environments. URC (Ubiquitous Robot Companion) robot has been proposed to develop network-based robot by applying distributed computing techniques. On URC robot, it is possible to save the computing power of robot client by environments, has been proposed to develop robot software using service-oriented architecture on server-client computing environments. The SOMAR client robot consists of two layers - device service layer and robot service layer. The device service controls physical devices, and the robot service abstracts robot's services, which are newly defined and generated by combining many device services. RSEL (Robot Service Executing Language) is defined in this paper to represent relations and connections between device services and robot services. A RESL document, including robot services by combining several device services, is translated to a programming language for robot client system using RSEL translator, then the translated source program is compiled and uploaded to robot client system with RPC (Remote Procedure Call) command. A SOMAR client system is easy to be applied to embedded systems of host/target architecture. Moreover it is possible to produce a light-weight URC client robot by reducing workload of RSEL processing engine.