• Title/Summary/Keyword: robot systems

Search Result 3,643, Processing Time 0.026 seconds

A Forward Link ADA Positioning method for mobile Robots (이동 로봇을 위한 순방향 링크 AOA 측위 방법)

  • Kim, Dong-Hyouk;Song, Seung-Hun;Roh, Gi-Hong;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.603-608
    • /
    • 2007
  • In the conventional AOA(angle-of-arrival) positioning utilizing reverse-link wireless channel, each sensor should be equipped with an array antenna to measure the incident angle of signal transmitting from a tag. To perform the complicated signal processing for angle measurements, sensor size and its power consumption will be large. In some applications like mobile robot location, there exists no strict restriction in tag size or in power consumption. Rather, it is desirable that the sensor would be as small as possible. This paper presents a new AOA positioning method utilizing forward-link channel. Under the assumption that the mobile robot is operating on the flat surface, the measurement model for FLAOA(tiJrward-link AOA) is derived first. Two kinds of position estimation algorithms using FLAOA measurements are proposed; Gauss-Newton method and closed-fonn solution method. With the proposed methods, we can ohtain the attitude of robot as well as its position. Positioning performance of proposed methods is compared by computer simulation. Simulation results show that the closed-form solution method using FLAOA measurements is suitable for indoor robot positioning.

Implementation of Horse Gait and Riding Aids for Horseback Riding Robot Simulator HRB-1 (승마 로봇 시뮬레이터 HRB-1을 위한 말의 보행 및 부조의 구현)

  • Park, Yong-Sik;Seo, Kap-Ho;Oh, Seung-Sub;Park, Sung-Ho;Suh, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.181-187
    • /
    • 2012
  • Horse riding is widely recognized as a valuable form of education, exercise and therapy. But, the injuries observed in horse riding range from very minor injuries to fatalities. In order to reduce these injuries, the effective horseback riding simulator is required. In this paper, we proposed the implementation method of horse gait and riding aids for horseback riding robot simulator HRB-1. For implementation of horse gait to robot simulator, we gathered and modified real motion data of horse. We obtained two main frequencies of each gait by frequency analysis, and then simple sinusoidal functions are acquired by genetic algorithm. In addition, we developed riding aids system including hands, leg, and seat aids. With the help of a developed robotic system, beginners can learn the skill of real horse riding without the risk of injury.

A 3D Map Building Algorithm for a Mobile Robot Moving on the Slanted Surface (모바일 로봇의 경사 주행 시 3차원 지도작성 알고리즘)

  • Hwang, Yo-Seop;Han, Jong-Ho;Kim, Hyun-Woo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.243-250
    • /
    • 2012
  • This paper proposes a 3D map-building algorithm using one LRF (Laser Range Finder) while a mobile robot is navigating on the slanted surface. There are several researches on 3D map buildings using the LRF. However most of them are performing the map building only on the flat surface. While a mobile robot is moving on the slanted surface, the view angle of LRF is dynamically changing, which makes it very difficult to build the 3D map using encoder data. To cope with this dynamic change of the view angle in build 3D map, IMU and balance filters are fused to correct the unstable encoder data in this research. Through the real navigation experiments, it is verified that the fusion of multiple sensors are properly performed to correct the slope angle of the slanted surface. The effectiveness of the balance filter are also checked through the hill climbing navigations.

Height & Position Control of a Power Line Inspection Robot Using Various Sensors (다양한 센서를 이용한 배전선 점검 로봇의 높이 및 자세제어)

  • Han, Sun-Sin;Choi, Jae-Young;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.169-175
    • /
    • 2009
  • A new wire detection algorithm for power line inspection by a mobile robot has been proposed in this paper. There have been a lot of studies in order to support the high-quality electric power. For the high-quality power supply, it is necessary to investigate the power lines and insulators before the lines or insulators were disconnected or damaged. Although Korea Electric power Corp. has made many efforts for the quality improvement, it is not enough to inspect all the power lines by human inspectors. According to this problem, it is decided to replace the human operators by the power line inspection robot. When the robots are used for the inspection, there could be several advantages, for example, the working efficiency and the prevention of accident. And also the shortage of human power for dangerous jobs can be resolved. In this paper, as a part of the development of power line inspection robot, DICRO, the sensor fusion and fuzzy control algorithms are developed to detect the wire and slope of the wire. The effectiveness of the proposed algorithms is proved by the real experiments with DICRO which is under development so far.

Implementation and Performance Evaluation of Preempt-RT Based Multi-core Motion Controller for Industrial Robot (산업용 로봇 제어를 위한 Preempt-RT 기반 멀티코어 모션 제어기의 구현 및 성능 평가)

  • Kim, Ikhwan;Ahn, Hyosung;Kim, Taehyoun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Recently, with the ever-increasing complexity of industrial robot systems, it has been greatly attention to adopt a multi-core based motion controller with high cost-performance ratio. In this paper, we propose a software architecture that aims to utilize the computing power of multi-core processors. The key concept of our architecture is to use shared memory for the interplay between threads running on separate processor cores. And then, we have integrated our proposed architecture with an industrial standard compliant IDE for automatic code generation of motion runtime. For the performance evaluation, we constructed a test-bed consisting of a motion controller with Preempt-RT Linux based dual-core industrial PC and a 3-axis industrial robot platform. The experimental results show that the actuation time difference between axes is 10 ns in average and bounded up to 689 ns under $1000{\mu}s$ control period, which can come up with real-time performance for industrial robot.

Position Control of The Robot Manipulator Using Fuzzy Logic and Multi-layer Neural Network (퍼지논리와 다층 신경망을 이용한 로봇 매니퓰레이터의 위치제어)

  • Kim, Jong-Soo;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.17-32
    • /
    • 1992
  • The multi-layer neural network that has broadly been utilized in designing the controller of robot manipulator possesses the desirable characteristics of learning capacity, by which the uncertain variation of the dynamic parameters of robot can be handled adaptively, and parallel distributed processing that makes it possible to control on real-time. However the error back propagation algorithm that has been utilized popularly in the learning of the multi-layer neural network has the problem of its slow convergence speed. In this paper, an approach to improve the convergence speed is proposed using the fuzzy logic that can effectively handle the uncertain and fuzzy informations by linguistic level. The effectiveness of the proposed algorithm is demonstrated by computer simulation of PUMA 560 robot manupulator.

  • PDF

Simultaneous Localization and Mapping For Swarm Robot (군집 로봇의 동시적 위치 추정 및 지도 작성)

  • Mun, Hyun-Su;Shin, Sang-Geun;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.296-301
    • /
    • 2011
  • This paper deals with the simultaneous localization and mapping system using cooperative robot. For recognizing environment, swarm robot uses the ultrasonic sensors and vision sensor. Ultrasonic sensors measure the distance information, and vision sensor recognizes the predefined landmark. we used SURF with excellent quality and fast matching in order to recognize landmark. Due to measurement error of sensors, we fusion them using particle filter for accurate localization and mapping. Finally, we show the feasibility of the proposed method through some experiments.

Modeling of vision based robot formation control using fuzzy logic controller and extended Kalman filter

  • Rusdinar, Angga;Kim, Sung-Shin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.238-244
    • /
    • 2012
  • A modeling of vision based robot formation control system using fuzzy logic controller and extended Kalman filter is presented in this paper. The main problems affecting formation controls using fuzzy logic controller and vision based robots are: a robot's position in a formation need to be maintained, how to develop the membership function in order to obtain the optimal fuzzy system control that has the ability to do the formation control and the noise coming from camera process changes the position of references view. In order to handle these problems, we propose a fuzzy logic controller system equipped with a dynamic output membership function that controls the speed of the robot wheels to handle the maintenance position in formation. The output membership function changes over time based on changes in input at time t-1 to t. The noises appearing in image processing change the virtual target point positions are handled by Extended Kalman filter. The virtual target positions are established in order to define the formations. The virtual target point positions can be changed at any time in accordance with the desired formation. These algorithms have been validated through simulation. The simulations confirm that the follower robots reach their target point in a short time and are able to maintain their position in the formation although the noises change the target point positions.

Generation of Locomotion for Snake-like Robot using Genetic Algorithm and Analysis for Selections of Partial Modules (유전알고리즘을 사용한 뱀형 로봇의 이동 생성 및 부분모듈 선택 분석)

  • Ahn, Ihn-Seok;Jang, Jae-Young;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.661-666
    • /
    • 2009
  • Modular snake-like robots, which consist of series of modules, are robust for failure and have flexible locomotions for environment. However, they are difficult to control and few efficient and various locomotions are introduced yet. In this paper, GA based phase generation and trajectory generation approaches are implemented and compared for locomotion of snake-like robots and extended for analysis for selections of partial modules. In addition, modeling and simulation environments are implemented in Webots simulator and above GA based experiments for locomotion are executed for KMC snake-like robot.

Experimental Studies of Controller Design for a Car-like Balancing Robot with a Variable Mass (무게 변화에 따른 차륜형 밸런싱 로봇의 제어기 설계 및 실험연구)

  • Kim, Hyun-Wook;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.469-475
    • /
    • 2010
  • This paper presents controller design of a two wheeled mobile inverted pendulum robot for one man transportation vehicle. Since the overall mass is varying with different drivers, suitable controller gains are obtained through experimental studies. Variation of the center of gravity due to different masses also affects stable balancing control. Thus, the desired balancing angle si required to be modified with respect to different masses. To measure masses for different drivers, a weight scale is used and those data are used for balancing control through communication. The gain scheduling method of using data obtained from experimental studies allows the robot to have stable balancing performances.