• Title/Summary/Keyword: robot systems

Search Result 3,642, Processing Time 0.03 seconds

Backward-Motion Control of Multiple Off-Hooked Trailers Using a Car-Like Mobile Robot (차량형 로봇을 이용한 다중 Off-Hooked 트레일러의 후진 제어)

  • Chung, Woo-Jin;Yoo, Kwang-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.273-280
    • /
    • 2009
  • It is difficult to find a practical solution for the backward-motion control of a car-like mobile robot with n passive trailers. Unlike an omni-directional robot, a car-like mobile robot has nonholonomic constraints and limitations of the steering angle. For these reasons, the backward motion control problem of a car-like mobile robot with $n$ passive trailers is not trivial. In spite of difficulties, backing up a trailer system is useful for parking control. In this study, we proposed a mechanical alteration which is connecting $n$ passive trailers to the front bumper of a car to improve the backward motion control performance. Theoretical verification and simulations show that the backward-motion control of a general car with n passive trailers can be successfully carried out by using the proposed approach.

  • PDF

Use of Learning Based Neuro-fuzzy System for Flexible Walking of Biped Humanoid Robot (이족 휴머노이드 로봇의 유연한 보행을 위한 학습기반 뉴로-퍼지시스템의 응용)

  • Kim, Dong-Won;Kang, Tae-Gu;Hwang, Sang-Hyun;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.539-541
    • /
    • 2006
  • Biped locomotion is a popular research area in robotics due to the high adaptability of a walking robot in an unstructured environment. When attempting to automate the motion planning process for a biped walking robot, one of the main issues is assurance of dynamic stability of motion. This can be categorized into three general groups: body stability, body path stability, and gait stability. A zero moment point (ZMP), a point where the total forces and moments acting on the robot are zero, is usually employed as a basic component for dynamically stable motion. In this rarer, learning based neuro-fuzzy systems have been developed and applied to model ZMP trajectory of a biped walking robot. As a result, we can provide more improved insight into physical walking mechanisms.

  • PDF

Work Measurement in Robot Ergonomics (Robot Ergonomics의 일환으로서 로봇 작업측정에 관한 연구)

  • 권규식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.48
    • /
    • pp.201-211
    • /
    • 1998
  • The fundamental object of work measurement is to precisely establish the time standards, which are the indices of labor productivity. This study discussed the development of robot work measurement method that could establish the time standard effectively. In manufacturing industries the various robot tasks are generally classified and standardized by the unit motions. The Robot Modularization of the Unit Motion (ROMUM) was realized by the module of two steps GET and PUT unit motions. This method reduced time and effort of analysis, and could be done with ease. Therefore, ROMUM will increase the convenience of use for the unskilled worker and decrease the time required, cost and errors. And, it will contribute to reduce the unnecessary motion by robot motion analysis.

  • PDF

Vibration Control of a Flexible Fobot Manipulator (유연한 로봇팔의 진동제어)

  • 신효필;윤여산;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.229-232
    • /
    • 1996
  • The position control accuracy of the robot arm is decreased significantly when a long arm robot is operated at high speed. In this case, the robot arm must be modeled as a flexible structure, not a rigid one, and its control system will be necessarily designed with its elastic modes taken into account. In this paper, the vibration control of a one-link flexible robot arm is presented. The robot system consists of a flexible arm manufactured with thin aluminium plate, AC servomotor with a harmonic drive for speed reduction, optical encoder and accelerometer. The system is modeled with limited number of elastic modes, and its parameters are determined from the results of the experiments. The implemented control schemes are LQ control and sliding mode control. The experiments and digital simulations are carried out to test the validity of the system modeling, controller design, and active control implementation.

  • PDF

A novel visual servoing techniques considering robot dynamics (로봇의 운동특성을 고려한 새로운 시각구동 방법)

  • 이준수;서일홍;김태원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.410-414
    • /
    • 1996
  • A visual servoing algorithm is proposed for a robot with a camera in hand. Specifically, novel image features are suggested by employing a viewing model of perspective projection to estimate relative pitching and yawing angles between the object and the camera. To compensate dynamic characteristics of the robot, desired feature trajectories for the learning of visually guided line-of-sight robot motion are obtained by measuring features by the camera in hand not in the entire workspace, but on a single linear path along which the robot moves under the control of a, commercially provided function of linear motion. And then, control actions of the camera are approximately found by fuzzy-neural networks to follow such desired feature trajectories. To show the validity of proposed algorithm, some experimental results are illustrated, where a four axis SCARA robot with a B/W CCD camera is used.

  • PDF

Navigation of a mobile robot using active landmarks (능동 표식을 이용한 이동 로봇의 운행)

  • 노영식;김재숙;권석근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.916-919
    • /
    • 1996
  • An real-time active beacon localization system for mobile robots is developed and implemented. This system permits the estimation of robot positions when detecting light sources by PSD(Position Sensitive Detector) sensor which are placed sparsely over the robot's work space as beacons(or landmarks). An LSE(Least Square Estimation) method is introduced to calibrate the internal parameters of a model for the beacon and robot position. The proposed system has two operational modes of position estimation. One is the initial position calculation by the detection of two or more light sources positions of which are known. The other is the continuous position compensation that calculates the position and heading of the robot using the IEKF(Iterated Extended Kalman Filter) applied to the beacon and dead-reckoning data. Practical experiments show that the estimated position obtained by this system is precise enough to be useful for the navigation of robots.

  • PDF

A study on the development of polishing robot system attached to machining center for curved surface die (머시닝센터 장착형 곡면금형 연마용 로봇 시스템 개발에 관한 연구)

  • 하덕주;이민철;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1312-1315
    • /
    • 1996
  • Polishing work for a curved surface die demands simple and repetitive operations and requires much time while it also demands high precision. Therefore it is operated by skilled worker in handiwork. But workers avoid polishing work gradually because of the poor environments such as dust and noise. In order to reduce the polishing time and to alleviate the problem of shortage of skilled workers, researches for automation of polishing have been pursued in the developed countries such as Japan. In this research we develop a polishing robot with 2 degrees of freedom motion and pneumatic system, and attach it to machining center with 3 degrees of freedom to form an automatic polishing system which keeps the polishing tool vertically on the surface of die and maintains constant pneumatic pressure. The developed polishing robot is controlled by real time sliding mode control using DSP(digital signal processor). A synchronization between machining center and polishing robot is accomplished by using M code of machining center. A performance experiment for polishing work is executed by the developed polishing robot.

  • PDF

Development of a tele-robotic system for steam generator maintenance works (원전 증기발생기 유지보수용 원격로봇 시스템 개발)

  • 황석용;김창회;김승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1519-1522
    • /
    • 1996
  • In this paper, we have developed a tele-robotic system for nozzle dam installation/removal works and tube relating maintenance works inside unclear power plant steam generator. Developed tele-robotic system consists of many hardwares including robot and a control system. Based on the 3 dimensional graphic simulation, a 6 D.O.F. hydraulic actuated robot and a 2 D.O.F. robot install/removal device have been developed. And also we deviced special tools for nozzle dam carry and bolting. For the tele-robot and other devices to be controlled at the nonradioactive area outside reactor containment building, we developed a tele-robot control system consisting of supervisory controller and remote controller.

  • PDF

A study on the new method of force reflection control for the teleoperated mobile robot

  • Hong, Sun-Gi;Lee, Ju-Jang;Kim, Seungho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1523-1526
    • /
    • 1996
  • This paper presents a new method of force reflection in the teleoperated mobile robot control: artificial force feedback. Generally it is well known that force feedback from slave to master increases the reality with which the operator interacts with the environment. In the applications of the teleoperated mobile robot, however, such a force feedback control algorithm has rarely appeared in the literature because the contact force between the environment and the mobile robot is not available. In this paper, a method of artificially generating the feedback force for the teleoperated mobile robot is presented in order to improve the task performance. The computed artificial force feeds into the new designed joystick so as to increase the telepresence of the environment. Through simulations, we confirm the validity and effectiveness of our algorithm.

  • PDF

Behavior Decision Model Based on Emotion and Dynamic Personality

  • Yu, Chan-Woo;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.101-106
    • /
    • 2005
  • In this paper, we propose a behavior decision model for a robot, which is based on artificial emotion, various motivations and dynamic personality. Our goal is making a robot which can express its emotion human-like way. To achieve this goal, we applied several emotion and personality theories in psychology. Especially, we introduced the concept of dynamic personality model for a robot. Drawing on this concept, we could make a behavior decision model so that the emotion expression of the robot has adaptability to various environments through interactions between human and the robot.

  • PDF