• Title/Summary/Keyword: robot surgery

Search Result 129, Processing Time 0.029 seconds

Development of Dual-Arm Anticancer Drug Compounding Robot and Preparation System with Adaptability and High-Speed

  • Nam, Giyoon;Kim, Young Joo;Kim, Yun Jung;Kim, Yeoun Jae;Seo, Jung Ae;Kim, Kyunghwan;Kim, Kwang Gi
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.64-68
    • /
    • 2016
  • Aim Robots are able to increase safety for pharmacy staff as separating from toxicity of anti-cancer drugs. For patient safety, it would provide right dose of the drugs. Additionally, it can reduce price of the drugs. Therefore, in this study, a novel compounding anticancer drugs robot system (Dupalro) was developed. Methods We used the robot system, Motoman dual-arm robot from YASKAWA, Japan and medications which are adapted for the robot were constructed. In order to develop a process of compounding anticancer drugs, information about five medications that are required to make anticancer drugs in hospitals was used. Results System for the five types of medications was constructed, and relating procedures for anticancer drugs compounding robot were developed. Conclusion Dupalro successfully was able to not only provide incremental safety and efficiency for both patients and pharmacy staff, but also decrease price of anticancer drugs.

Design of Dexterous Manipulator for MIS (복강경 수술을 위한 지능형 작동기의 제작)

  • Song, Ho-Seok;Chung, Jong-Ha;Lee, Jung-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.823-828
    • /
    • 2004
  • Minimally Invasive Surgery (MIS) is surgery of the chest, abdomen, spine and pelvis, done with the aid of a viewing scope, and specially designed instruments. Benefits of minimally invasive surgery are less pain, less need for post-surgical pain medication, less scarring and less likelihood for incisional complications. Since the late 1980's, minimally invasive surgery has gained widespread acceptance because of the such advantages. However there are significant disadvantages which have, to date, limited the applications for these promising techniques. The reasons are limited degree-of-freedom, reduced dexterity and the lack of tactile feeling. To overcome such disadvantages many researchers have endeavored to develop robotic systems. Even though some robot aided systems achieved success and commercialized, there still remain many thing to be improved. In this paper, the robotic system which can mimic whole motions of a human arm by adding additional DOF is presented. The suggested design is expected to provide surgeons with improved dexterity during minimally invasive surgery.

  • PDF

Is Robot-Assisted Surgery Really Scarless Surgery? Immediate Reconstruction with a Jejunal Free Flap for Esophageal Rupture after Robot-Assisted Thyroidectomy

  • Park, Seong Hoon;Kim, Joo Hyun;Lee, Jun Won;Jeong, Hii Sun;Lee, Dong Jin;Kim, Byung Chun;Suh, In Suck
    • Archives of Plastic Surgery
    • /
    • v.44 no.6
    • /
    • pp.550-553
    • /
    • 2017
  • Esophageal perforation is a rare but potentially fatal complication of robot-assisted thyroidectomy (RAT). Herein, we report the long-term outcome of an esophageal reconstruction with a jejunal free flap for esophageal rupture after RAT. A 33-year-old woman developed subcutaneous emphysema and hoarseness on postoperative day1 following RAT. Esophageal rupture was diagnosed by computed tomography and endoscopy, and immediate surgical exploration confirmed esophageal rupture, as well as recurrent laryngeal nerve injury. We performed a jejunal free flap repair of the 8-cm defect in the esophagus. End-to-side microvascular anastomoses were created between the right external carotid artery and the jejunal branches of the superior mesenteric artery, and end-to-end anastomosis was performed between the external jugular vein and the jejunal vein. The right recurrent laryngeal nerve injury was repaired with a 4-cm nerve graft from the right ansa cervicalis. Esophagography at 1 year after surgery confirmed that there were no leaks or structures, endoscopy at 1 year confirmed the resolution of vocal cord paralysis, and there were no residual problems with swallowing or speech at a 5-year follow-up examination. RAT requires experienced surgeons with a thorough knowledge of anatomy, as well as adequate resources to quickly and competently address potentially severe complications such as esophageal rupture.

Design of a Compact Laparoscopic Assistant Robot;KaLAR

  • Lee, Yun-Ju;Kim, Jona-Than;Ko, Seong-Young;Lee, Woo-Jung;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2648-2653
    • /
    • 2003
  • This paper describes the development of a 3-DOF laparoscopic assistant robot system with motor-controlled bending and zooming mechanisms using the voice command motion control and auto-tracking control. The system is designed with two major criteria: safety and adaptability. To satisfy the safety criteria we designed the robot with optimized range of motion. For adaptability, the robot is designed with compact size to minimize interference with the staffs in the operating room. The required external motions were replaced by the bending mechanism within the abdomen using flexible laparoscope. The zooming of the robot is achieved through in and out motion at the port where the laparoscope is inserted. The robot is attachable to the bedside using a conventional laparoscope holder with multiple DOF joints and is compact enough for hand-carry. The voice-controlled command input and auto-tracking control is expected to enhance the overall performance of the system while reducing the control load imposed on the surgeon during a laparoscopic surgery. The proposed system is expected to have sufficient safety features and an easy-to-use interface to enhance the overall performance of current laparoscopy.

  • PDF

da Vinci Robot-Assisted Esophagectomy for Esophageal Cancer: A Case of Esophago-gastrostomy through the Retrosternal Route - A case report - (식도암 환자에서 da Vinci 로봇을 이용한 식도암 수술 (흉골하 통로를 통한 식도-위 문합술) - 1예 보고 -)

  • Jeong, Sang-Seok;Choi, Pill-Jo;Woo, Jong-Soo;Kim, Si-Ho;Bang, Jung-Hee;Park, Kwon-Jae
    • Journal of Chest Surgery
    • /
    • v.42 no.3
    • /
    • pp.396-400
    • /
    • 2009
  • Operations using the da Vinci robot have performed in for many surgeries, but the adoption of robotics to general thoracic surgery has been slow. The patient (age 74, male) visited our hospital complaining of hiccups and dysphagia. The CT scan and endoscopic biopsy revealed esophageal cancer (squamous cell carcinoma). We performed transthoracic esophagectomy using a da Vinci robot and this was followed by gastric tube mobilization via laparoscopy. Cervical esophago-gastric anastomosis was done using the hand-sewn method. The gastric tube was brought into the neck through the retrosternal route. The patient was discharged without any complications. We report here on a case of successful da Vinci robotic esophgagectomy.

Robotic Surgery in Head and Neck (두경부 영역에서의 로봇 수술)

  • Tae, Kyung;Shin, Kwang-Soo
    • Korean Journal of Bronchoesophagology
    • /
    • v.16 no.1
    • /
    • pp.27-32
    • /
    • 2010
  • Organ preservation surgery and minimally invasive surgery have been developed during the past 20 years with major focus on transoral laser surgery, endoscopic surgery, and robotic surgery. Two major robotic surgeries in head and neck area are transoral robotic surgery (TORS) and robotic thyroidectomy. Transoral robotic surgery is a safe and efficacious method of surgical treatment of oropharyngeal. hypopharyngeal and laryngeal neoplasm. Advantages of the technique include adequate ability to visualize and manipulate lesions with two hands. TORS can provide magnified three dimensional views and overcome the limitation resulting from the "line of sight" which hinders transoral laser procedure. The swallowing function following transoral robotic surgery show superior and patients were able to retain or rapidly regain swallowing function in the majority of cases. Recently, robotic thyroidectomy has also been developed to overcome the [imitation of endoscopic thyroidectomy. Robotic thyroidectomy by a gasless unilateral axillo-breast or axillary approach using a da Vinci S Surgical Robot is a feasible and cosmetically excellent procedure. It can be a promising alternative to endoscopic thyroidectomy or conventional open thyroidectomy.

  • PDF

Computer Integrated Surgical Robot System for Spinal Fusion

  • Kim Sungmin;Chung Goo Bong;Oh Se Min;Yi Byung-Ju;Kim Whee Kuk;Park Jong Il;Kim Young Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.265-270
    • /
    • 2005
  • A new Computer Integrated Surgical Robot system is composed of a surgical robot, a surgical planning system, and an optical tracking system. The system plays roles of an assisting surgeon and taking the place of surgeons for inserting a pedicle screw in spinal fusion. Compared to pure surgical navigation systems as well as conventional methods for spinal fusion, it is able to achieve better accuracy through compensating for the portending movement of the surgical target area. Furthermore, the robot can position and guide needles, drills, and other surgical instruments or conducts drilling/screwing directly. Preoperatively, the desired entry point, orientation, and depth of surgical tools for pedicle screw insertion are determined by the surgical planning system based on CT/MR images. Intra-operatively, position information on surgical instruments and targeted surgical areas is obtained from the navigation system. Two exemplary experiments employing the developed image-guided surgical robot system are conducted.

Effectiveness and Safety of Robot-Assisted Brain Stereotactic Surgery: A Systematic Review (뇌정위 수술 보조 로봇 시스템의 안전성과 유효성: 체계적 문헌고찰)

  • Park, Sun-young;Jeon, Mi Hye
    • The Journal of Health Technology Assessment
    • /
    • v.6 no.2
    • /
    • pp.142-147
    • /
    • 2018
  • Objectives: The purpose of this study is to evaluate the safety and effectiveness of Robot-Assisted Brain Stereotactic Surgery with a systematic review. Methods: Electronic literature was searched using KoreaMed, Ovid-MEDLINE, Ovid-EMBASE, and Cochrane Library on 6th April 2017. Two authors screened 1218 citations. Duplicated articles of 456 excluded, the remaining 762 articles were reviewed with title and abstract. Results: A total of 8 studies were selected in this review. The device used in all studies was $ROSA^{TM}$. In one cohort study comparing the intervention ($ROSA^{TM}$) with the control (conventional stereotactic surgery), hematoma was reported no significant difference between groups. In six descriptive studies, one study reported hematoma 10% (10/100) and temporary nerve impairment 6% (6/100) using the ROSA; while five descriptive study did not report any complications. In one cohort, the localization precision were 1.2 mm in the intervention group and 1.1 mm in the control group; the localization success rate as 78.2% in the intervention group and 76.2% in the control group in one cohort; and the average time for surgery as 130 min for the intervention group and 352 min for the control group in one cohort. Four studies reported the localization success rate as 100%; two out of three articles reported the overall time for surgery as 56 min and 90 min, while one article reported the time as less than one hour in 50% of patients (50/100); two articles reported in epilepsy patients, the condition after the surgery was Engel level I in 66.2%, 75% patients, Engel level II-III in 25%, 26.5% patients, and Engel level 4 in 7.3% patients. Conclusion: Robot-Assisted Brain Stereotactic Surgery is a safe and accurate technique that can significantly reduce the time for the brain stereotactic surgery. However, further studies are needed to generalize the results.

Robotic Surgery in the Orthopedic Field (정형외과 영역에서 로봇수술)

  • Lee, Woo-Suk;Jung, Woo-Suk
    • Journal of the Korean Orthopaedic Association
    • /
    • v.53 no.6
    • /
    • pp.459-465
    • /
    • 2018
  • Of the many factors that affect the clinical outcomes of orthopedic surgery, the surgical procedure is the most important. Robotics have been developed to perform the surgical procedures more accurately and consistently. Robotic surgical procedures in the orthopedic field were developed 20 years ago. Some designs of surgical robots have disappeared due to practical problems and complications, and an another design of surgical robots is emerging. To date, the use of robot surgery in arthroplasty is still controversial in terms of the clinical outcomes, practicality, and cost-effectiveness, even though it has been reported to be effective in the alignment and positioning of components in the field of artificial joints. Early robotic surgery was based mainly on active robot surgery according to the scheduled operation without the intervention of the operator. Recently the semi-active system of robotic surgery has been introduced. In a semi-active system, the robot constrains the surgeon to a haptic boundary defined by the computer based on the 3-dimensional imaging preoperative plan, and the operator can change the preoperative plan through real-time feedback during operation.

Method for C-arm Based Guide Needle Insertion Assistant System for Endoscopic Disc Surgery (C-arm 영상 기반 척추 디스크 내시경 수술을 위한 가이드 바늘 삽입 보조 시스템)

  • Yoon, Hyon Min;Cho, Hyunchul;Park, Kyusic;Shin, Sangkyun;Lee, Deukhee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.263-268
    • /
    • 2015
  • Due to an increased sitting time in work, lumbar disc disease is one of the most frequent diseases in modern days, and this occasionally requires surgery for treatment. Endoscopic disc surgery, one of the common disc surgeries, requires a process of inserting a guide needle to the target disc for which the insertion path is manually planned by drawing lines on the patient's skin while monitoring the fluoroscopic view of the lumbar. Such procedure inevitably exposes both surgeon and patient to the fluoroscopy radiation emitted from the c-arm for a long time. To reduce the radiation exposure time, this study proposes a computer assisted method of calculating the 3D guide needle path by using 2D c-arm images of the disc in 3 different angles. Additionally, a method of the guide robot control based on the 3D needle path was developed by implementing the Hand-eye Calibration method to calculate the transformation matrix between the c-arm and robot base coordinate systems. The proposed system was then tested for its accuracy.