• Title/Summary/Keyword: robot surgery

Search Result 129, Processing Time 0.028 seconds

Robotic harvest of a latissimus dorsi flap using a single-port surgical robotic system in breast reconstruction

  • Joo, Oh Young;Song, Seung Yong;Lew, Dae Hyun;Park, Hyung Seok;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • v.48 no.6
    • /
    • pp.577-582
    • /
    • 2021
  • Robot-assisted surgery is evolving to incorporate a higher number of minimally invasive techniques. There is a growing interest in robotic breast reconstruction that uses autologous tissue. Since a traditional latissimus dorsi (LD) flap leads to a long donor scar, which can be an unpleasant burden to patients, there have been many attempts to decrease the scar length using minimally invasive approaches. This study presents the case of a patient who underwent a robot-assisted nipple-sparing mastectomy followed by immediate breast reconstruction with an LD flap using a single-port robotic surgery system. With the assistance of a single-port robot, a simple docking process using a short and less visible incision is possible. Compared to multiport surgery systems, single-port robots can reduce the possibility of collision between robotic arms and provide a clear view of the medial border of the LD where the curvature of the back restricts the visual field. We recommend the use of single-port robots as a minimally invasive approach for harvesting LD flaps.

Robot-Assisted Repair of Atrial Septal Defect: A Comparison of Beating and Non-Beating Heart Surgery

  • Yun, Taeyoung;Kim, Hakju;Sohn, Bongyeon;Chang, Hyoung Woo;Lim, Cheong;Park, Kay-Hyun
    • Journal of Chest Surgery
    • /
    • v.55 no.1
    • /
    • pp.55-60
    • /
    • 2022
  • Background: Robot-assisted repair of atrial septal defect (ASD) can be performed under either beating-heart or non-beating-heart conditions. However, the risk of cerebral air embolism (i.e., stroke) is a concern in the beating-heart approach. This study aimed to compare the outcomes of beating- and non-beating-heart approaches in robot-assisted ASD repair. Methods: From 2010 to 2019, a total of 45 patients (mean age, 43.4±14.6 years; range, 19-79 years) underwent ASD repair using the da Vinci robotic surgical system. Twenty-seven of these cases were performed on a beating heart (beating-heart group, n=27) and the other cases were performed on an arrested or fibrillating heart (non-beating-heart group, n=18). Cardiopulmonary bypass (CPB) was achieved via cannulation of the femoral vessels and the right internal jugular vein in all patients. Results: Complete ASD closure was verified using intraoperative transesophageal echocardiography in all patients. Conversion to open surgery was not performed in any cases, and there were no major complications. All patients recovered from anesthesia without any immediate postoperative neurologic symptoms. In a subgroup analysis of isolated ASD patch repair (beating-heart group: n=22 vs. non-beating-heart group: n=5), the operation time and CPB time were shorter in the beating-heart group (234±38 vs. 253±29 minutes, p=0.133 and 113±28 vs. 143±29 minutes, p=0.034, respectively). Conclusion: Robot-assisted ASD repair can be safely performed with the beating-heart approach. No additional risk in terms of cerebral embolism was found in the beating-heart group.

An Image-Guided Robotic Surgery System for Spinal Fusion

  • Chung Goo Bong;Kim Sungmin;Lee Soo Gang;Yi Byung-Ju;Kim Wheekuk;Oh Se Min;Kim Young Soo;So Byung Rok;Park Jong Il;Oh Seong Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.30-41
    • /
    • 2006
  • The goal of this work is to develop and test a robot-assisted surgery system for spinal fusion. The system is composed of a robot, a surgical planning system, and a navigation system. It plays the role of assisting surgeons for inserting a pedicle screw in the spinal fusion procedure. Compared to conventional methods for spinal fusion, the proposed surgical procedure ensures minimum invasion and better accuracy by using robot and image information. The robot plays the role of positioning and guiding needles, drills, and other surgical instruments or conducts automatic boring and screwing. Pre-operative CT images intra-operative fluoroscopic images are integrated to provide the surgeon with information for surgical planning. Some experiments employing the developed robotic surgery system are conducted. The experimental results confirm that the system is not only able to guide the surgical tools by accurately pointing and orienting the specified location, but also successfully compensate the movement of the patient due to respiration.

Development of An Image-Guided Robotic Surgery System for Spinal Fusion (영상 지원 척추 융합 수술 로봇 시스템의 개발)

  • Chung Goo-Bong;Lee Soo-Gang;Kim Sung-Min;Oh Se-Min;Yi Byung-Ju;Kim Young-Soo;Park Jong-Il;Oh Seong-Hoon;Kim Whee-Kuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.144-148
    • /
    • 2005
  • The goal of this work is to develop and test a robot-assisted surgery system for spinal fusion. The system is composed of a robot, a surgical planning system, and a navigation system. It plays the role of assisting surgeons for inserting a pedicle screw in the spinal fusion procedure. Compared to conventional methods fer spinal fusion, the proposed surgical procedure ensures minimum invasion and better accuracy by using robot and image information. The robot plays the role of positioning and guiding needles, drills, and other surgical instruments or conducts automatic boring and screwing. Pre-operative CT images and intra-operative fluoroscopic images are integrated to provide the surgeon with information for surgical planning. Several experiments employing the developed robotic surgery system are conducted. The experimental results confirmed that the system is not only able to guide the surgical tools by accurately pointing and orienting the specified location, but also successfully compensate the movement of the patient due to his/her respiration.

  • PDF

A Study of a RealTime OS Based Motor Control System for Laparoscopic Surgery Robot (실시간 운영체제 기반의 복강경 수술 로봇의 모터제어 시스템에 관한 연구)

  • Song, Seung-Joon;Kim, Yong;Choi, Jae-Soon;Bae, Jin-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.218-221
    • /
    • 2006
  • This paper reports on a Realtime OS based motor control system for laparoscopic surgery robot which enables telesurgery and overcomes shortcomings with conventional laparoscopic surgery. The system has a conventional master-slave robot configuration and the control system consists of joint controllers, host controllers, and power units. The robot features (1) a compact slave robot with 5 DOF (Degree Of Freedom) expanding the workspace of each tool and increasing the number of tools operating simultaneously, and (2) direct 1:1 correspondence in the joint of master and slave robot that simplifies control algorithm and enhances reliability. Each master, slave and GUI (Graphical User Interface) host has a dedicated RTOS (RealTime OS), RTLinux-Pro (FSMLabs Inc., U.S.A.) Each master and slave controller set pair has a dedicated CAN (Controller Area Network) channel for control and monitoring signal communication. Total 4 pairs of the master/slave manipulators as current are monitored by one host controller for operation monitoring and higher level motion control. The system showed acceptable performance in both position control precision and master-slave motion synchronization and is now under further development for better safety and control fidelity for clinically applicable prototype.

  • PDF

A Study on Development of Technology System for MIS(Minimally Invasive Surgery) robot of S. Korea analysed by the Application of Scenario Planning (최소침습수술용 의료로봇 기술개발연구 - 시나리오플래닝을 적용하여 -)

  • Lee, Sang-Yun;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.13-26
    • /
    • 2013
  • This study is about development of technology system for MIS(Minimally Invasive Surgery) robot of S. Korea analysed by the application of scenario planning. MIS robot industry receive attention as a new growth industry for national and international and is noticeable for the leading industry of future era in Korea. In this paper was examined the characteristics of an MIS robot technology and its components. It was investigated about the technology of an overseas MIS robot(especially U.S.A) and Korean domestic MIS robot and understood such as the country's policy propulsion issues then, was searched about development direction of the future. As a result, the future policy for MIS robot of S. Korea is to further spur the development of new MIS robot technology and more improvement of the technology level of MIS robot with AR(Augmented Reality) display.

A Study on the Development of Medical Service Robot (의료용 서비스 로봇 개발에 관한 연구)

  • Kang, Sung-In;Park, Yoon-A;Oh, Am-Suk;Jean, Je-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.77-80
    • /
    • 2011
  • Medical robot has four fields. Surgery assistant robot, robotic surgery, Surgery Simulator, rehabilitation robot. Thus, medical robots is often high precision and reliability requirements for operations are being developed. Medical service robot's another sector is care for service robots. Care services robot is the hospital's reception work and biometric data acquisition of patients, the hospital in location and content information provide to patients. But now medical service robot practical acceptance process failed to progress. In this paper were the medical service robot systems design and implementation. Implemented the robot system is using the standard protocols for the exchange of medical information and can be linked with hospital information system. The hospital's patient reception and processing, to provide care waiting number information.

  • PDF

Robot-Assisted Free Flap in Head and Neck Reconstruction

  • Song, Han Gyeol;Yun, In Sik;Lee, Won Jai;Lew, Dae Hyun;Rah, Dong Kyun
    • Archives of Plastic Surgery
    • /
    • v.40 no.4
    • /
    • pp.353-358
    • /
    • 2013
  • Background Robots have allowed head and neck surgeons to extirpate oropharyngeal tumors safely without the need for lip-split incision or mandibulotomy. Using robots in oropharyngeal reconstruction is new but essential for oropharyngeal defects that result from robotic tumor excision. We report our experience with robotic free-flap reconstruction of head and neck defects to exemplify the necessity for robotic reconstruction. Methods We investigated head and neck cancer patients who underwent ablation surgery and free-flap reconstruction by robot. Between July 1, 2011 and March 31, 2012, 5 cases were performed and patient demographics, location of tumor, pathologic stage, reconstruction methods, flap size, recipient vessel, necessary pedicle length, and operation time were investigated. Results Among five free-flap reconstructions, four were radial forearm free flaps and one was an anterolateral thigh free-flap. Four flaps used the superior thyroid artery and one flap used a facial artery as the recipient vessel. The average pedicle length was 8.8 cm. Flap insetting and microanastomosis were achieved using a specially manufactured robotic instrument. The total operation time was 1,041.0 minutes (range, 814 to 1,132 minutes), and complications including flap necrosis, hematoma, and wound dehiscence did not occur. Conclusions This study demonstrates the clinically applicable use of robots in oropharyngeal reconstruction, especially using a free flap. A robot can assist the operator in insetting the flap at a deep portion of the oropharynx without the need to perform a traditional mandibulotomy. Robot-assisted reconstruction may substitute for existing surgical methods and is accepted as the most up-to-date method.