• Title/Summary/Keyword: robot server

Search Result 120, Processing Time 0.031 seconds

A Study on the Distributed Real-time Mobile Robot System using TCP/IP and Linux (Linux와 TCP/IP를 이용한 분산 실시간 이동로봇 시스템 구현에 관한 연구)

  • 김주민;김홍렬;양광웅;김대원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.789-797
    • /
    • 2003
  • An implementation scheme and some improvements are proposed to adopt public-licensed operating system, Linux and de-facto world-wide network standard, TCP/IP into the field of behavior-based autonomous mobile robots. To demonstrate the needs of scheme and the improvement, an analysis is performed on a server/client communication problem with real time Linux previously proposed, and another analysis is also performed on interactions among TCP/IP communications and the performance of Linux system using them. Implementation of behavior-based control architecture on real time Linux is proposed firstly. Revised task-scheduling schemes are proposed that can enhance the performance of server/client communication among local tasks on a Linux platform. A new method of TCP/IP packet flow handling is proposed that prioritizes TCP/IP software interrupts with aperiodic server mechanism as well. To evaluate the implementation scheme and the proposed improvements, performance enhancements are shown through some simulations.

Walking Robot With 4 Legs

  • Jang, Sung-Hwan;Lee, Ja-Yong;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.123.4-123
    • /
    • 2001
  • This paper explains the walking robot with 4 legs. One leg is composed of 4 dc server motors and have 4 d.o.f. This walking robot has simple structure using "the principle of lever". The structure of robot models the 4 legs´ animal such as dog. The walking patterns is various and complex. With inspecting the walking dogs, the walking motions implemented by patterns. The center of mass is important of this type robot. The significant issue of walking is weight. As the weight is lighter, so the robot well walks. The method of walking is patterns.

  • PDF

Design of network for data interaction between Robot Agents in Multi Agent Robot System (MARS) (Multi Agent Robot System(MARS)의 Robot Agent 간 정보교환을 위한 네트워크 프로그램 구현)

  • Ko, Kwang-Eun;Lee, Jeong-Soo;Jang, In-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.712-717
    • /
    • 2007
  • Using home network system including home server, home service robot, a variety of device, it is generally known that application of Multi Agent System for performing variously distributed process that can be occur in home environment, is efficient method. In this system, it is intelligent service robot that a key of human interface and physical service offer Therefore, using application of established multi agent system, we can defined Multi Agent Robot System. In 'open' home environment, between all agent data interaction and cooperation are needed for Multi Agent System offer to user that more efficient service. For this, we focus our attention on define as agent that can autonomic drive and offer to user that physical service robots and, design, suggest the simulator can display that between robot agents communication or between other agents, like home server, and robot agents communication information to user interface.

Implementation of ROS-Based Intelligent Unmanned Delivery Robot System (ROS 기반 지능형 무인 배송 로봇 시스템의 구현)

  • Seong-Jin Kong;Won-Chang Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.610-616
    • /
    • 2023
  • In this paper, we implement an unmanned delivery robot system with Robot Operating System(ROS)-based mobile manipulator, and introduce the technologies employed for the system implementation. The robot consists of a mobile robot capable of autonomous navigation inside the building using an elevator and a Selective Compliance Assembly Robot Arm(SCARA)-Type manipulator equipped with a vacuum pump. The robot can determines the position and orientation for picking up a package through image segmentation and corner detection using the camera on the manipulator. The proposed system has a user interface implemented to check the delivery status and determine the real-time location of the robot through a web server linked to the application and ROS, and recognizes the shipment and address at the delivery station through You Only Look Once(YOLO) and Optical Character Recognition(OCR). The effectiveness of the system is validated through delivery experiments conducted within a 4-story building.

Remote Dynamic Control of AM1 Robot Using Network (네트워크를 이용한 AM1 로봇의 원격 동적 제어)

  • Kim, Seong-Il;Yoon, Sin-Il;Bae, Gil-Ho;Lee, Jin;Han, Seong-Hyeon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.556-560
    • /
    • 2002
  • In this paper, we propose a remote controller for robot manipulator using local area network(LAN) and internet. To do this, we develope a server-client system as used in the network field. The client system is in any computer in remote place for the user to log-in the server and manage the remote factory. the server system is a computer which controls the manipulator and waits for a access from client. The server system consists of several control algorithms which is needed to drive the manipulator and networking system to transfer images that shows states of the work place, and to receive a Tmp data to run the manipulator The client system consists of 3D(dimension) graphic user interface for teaching and off-line task like simulation, external hardware interface which makes it easier for the user to teach. Using this server-client system, the user who is on remote place can edit the work schedule of manipulator, then run the machine after it is transferred and monitor the results of the task.

  • PDF

Android Based Ubiquitous Interface for Controlling Service Robots (서비스 로봇 제어를 위한 안드로이드 기반의 유비쿼터스 인터페이스)

  • Quan, Yongxun;Ahn, Hyun-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.35-41
    • /
    • 2010
  • In this paper, an Android based ubiquitous interface for controlling service robots is presented. The robot server captures the images for the front view of the robot, makes a map of the environment and its position, produces a graphic image of its pose, and then transmits them to the Android client. The Android client displays them in the LCD panel and transfers control information obtained from touched buttons to the server. In the interface environment, we implement remote moving mode, autonomous moving mode, and remote operation mode for being used for versatile operability to the robot with limited screen of the smart phone. Experimental results show the implementation of the proposed interface in Android installed on Motoroi to control a service robot, and demonstrate its feasibility.

A Design of Intelligent Surveillance System Based on Mobile Robot and Network Camera (모바일 로봇 및 네트워크 카메라 기반 지능형 감시 시스템 설계)

  • Park, Jung-Hyun;Lee, Min-Young;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.476-481
    • /
    • 2008
  • The necessity of intelligent surveillance system is gradually considered seriously from the space where the security is important. From this paper will load Network Camera in Mobile Robot based on embedded Linux and Goal is in the system embodiment will be able to track the intruder. From Network Camera uses Wireless Lan transmits an image with server, grasps direction of the intruder used Block Matching algorithms from server, transmits direction information and tracks an intruder. The robot tracks the intruder according to gets the effective image of an intruder. In compliance with this paper the system which is embodied is linked with a different surveillance system and as intelligent surveillance system there is a possibility of becoming worse a reliability.

Embedded Web Server for Monitoring and Control of a Mobile Robot

  • Sin,Yonggak;Kwak, Jaehyuk;Lim, Joonhong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.132.2-132
    • /
    • 2001
  • In this paper, we propose an efficient configuration of a system for the remote control of a mobile robot. The interface has a video feedback and runs in standard web environments. For control servers of mobile robot and CCD camera, we use the environment with embedded web server Specific program has been developed in order to grab the images using Microsoft Visual C++ The external camera sends the video signal to a framegrabber in the PC, then this program grabs the images and puts them in shared memory in BMP format. For a video feedback, we use image feedback based on the client pull technique supported by Netscape and Internet Explorer.

  • PDF

An Implementation of Sound Tracking Mobile Robot Using Sound Sensors (사운드 센서를 이용한 음원 추적 이동 로봇의 구현)

  • Woo, Him-Chan;Son, Hyeong-Gon;Lee, Seung-Hun;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • In this paper, we describe an sound tracking mobile robot suitable for areas where GPS is not available. Sound sensors are attached to four sides of the robot in order to locate the person in a danger, and the robot is supposed to move to the yelling person. The traveling distance of the mobile robot is calculated by the encoder attached to the wheel of the mobile robot. The moving direction of the mobile robot is measured by a gyro sensor on the robot. When the person in danger pushes a button of the mobile robot, the mobile robot transmits the trajectory data to a designated server.

A Design and Implementation of Educational Mobile Robot System including Remote Control Function (원격 제어 기능을 포함한 교육용 모바일 로봇 시스템의 설계 및 구현)

  • Chung, Joong-Soo;Jung, Kwang-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.33-40
    • /
    • 2015
  • This paper presents the design and implementation of the educational remote controlled robot system including remote sensing in the embedded environment. The design of sensing information processing, software design and template design mechanism for the programming practice are introduced. LPC1769 using Cortex-M3 core as CPU, LPCXPRESSO as debugging environment, C language as firmware development language and FreeRTOS as OS are used in development environment. The control command is received via RF communication by the server and the robot system which is operated by driving the various sensors. The educational procedure is from robot demo operation program as hands-on practice and then compiling, loading of the basic robot operation program, already supplied. Thereafter the verification is checked by using the basic robot operation to allow demo operation such as hands-on-training procedure. The original protocol is designed via RF communication between server and robot system, and the satisfied performance result is presented by analyzing the robot sensing data processing.