• Title/Summary/Keyword: robot sensing

Search Result 300, Processing Time 0.027 seconds

Detection of Implicit Walking Intention for Walking-assistant Robot Based on Analysis of Bio/Kinesthetic Sensor Signals (보행보조로봇을 위한 다중 생체/역학 센서의 신호 분석 및 사용자 의도 감지)

  • Jang, Eun-Hye;Chun, Byung-Tae;Chi, Su-Young;Lee, Jae-Yeon;Cho, Young-Jo
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.294-301
    • /
    • 2010
  • In order to produce a convenient robot for the aged and the lower limb disabled, it is needed for the research detecting implicit walking intention and controlling robot by a user's intention. In this study, we developed sensor module system to control the walking- assist robot using FSR sensor and tilt sensor, and analyzed the signals being acquired from two sensors. The sensor module system consisted of the assist device control unit, communication unit by wire/wireless, information collection unit, information operation unit, and information processing PC which handles integrated processing of assist device control. The FSR sensors attached user's the palm and the soles of foot are sensing force/pressure signals from these areas and are used for detecting the walking intention and states. The tilt sensor acquires roll and pitch signal from area of vertebrae lumbales and reflects the pose of the upper limb. We could recognize the more detailed user's walking intention such as 'start walking', 'start of right or left foot forward', and 'stop walking' by the combination of FSR and tilt signals can recognize.

Self Localization of Mobile Robot Using UHF RFID Landmark

  • Kwon, Hyouk-Gil;Kim, Min-Sik;Ryu, Je-Goon;Shim, Hyeon-Min;Lee, Eung-Hyuk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1606-1611
    • /
    • 2005
  • The goal of this paper is to develop a self localization of mobile robot using UHF RFID landmark. We present landmark, a location sensing archetype system that uses UHF Radio Frequency Identification (UHF RFID) technology for locating objects inside buildings. The major advantage of landmark is that it improves the overall accuracy of locating objects by utilizing the concept of reference tags. Based on experimental analysis, we demonstrate that passive UHF RFID is a viable and cost-effective candidate for indoor location sensing. We conduct a series of experiments to evaluate performance of the positioning of the landmark System. In the standard setup, we place RF Reader which has two antennas and 25 tags in our lab. This research uses the assumption-based coordinates (ABC) algorithm[3] for determining the localization of robot. Also, we show how Radio Frequency Identification (UHF RFID) can be used in robot-assisted indoor navigation for the visually impaired. The experiments illustrate that passive UHF RFID tags can act as reliable landmark that trigger local navigation behaviors to achieve global navigation objectives.

  • PDF

Development of 3-axis finger force sensor for an intelligent robot's hand (로봇의 지능형 손을 위한 3축 손가락 힘센서 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.411-416
    • /
    • 2006
  • This paper describes the development of a 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand. In order to safely grasp an unknown object, robot's hand should measure the weight of an object and the force of grasping direction simultaneous. But, in the published papers, the grippers and hands equippd with the force sensor that could only measure the force of grasping direction, and grasped objects using their sensors. These grippers and hands can't safely grasp unknown objects, because they can't measure the weight of it. Thus, it is necessary to develop 3-axis force sensor that can measure the weight of an object and the force of grasping direction for an intelligent gripper. In this paper, 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand was developed. In order to fabricate a 3-axis finger force sensor, the sensing elements were modeled using parallel plate beams, and the theoretical analysis was performed to determine the size of sensing elements, then the 3-axis finger force sensor was fabricated. Also, the characteristic test of the developed 3-axis finger force sensor was performed.

A Study on Stable Grasping Control of Dual-fingers with Soft-Tips (소프트-팁이 장착된 듀얼-핑거의 안정적 파지 제어에 관한 연구)

  • 심재군;한형용;양순용;이병룡;안경관;김성수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.219-224
    • /
    • 2002
  • This paper aims to derive a mathematical model of the dynamics of handling tasks in robot finger which stable grasping and manipulates a rigid object with some dexterity. Firstly, a set of differential equation describing dynamics of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. Secondly, problems of controlling both the internal force and the rotation angle of the grasped object under the constraints of area-contacts of tight area-contacts are discussed. The effect of geometric constraints of area-contacts on motion of the overall system is analyzed and a method of computer simulation for overall system of differential-algebraic equations is presented. Thirdly, simulation results are shown and the effects of geometric constraints of area-contact is discussed. Finally, it is shown that even in the simplest case of dual single D.O.F manipulators there exists a sensory feedback from sensing data of the rotational angle of the object to command inputs to joint actuators and this feedback connection from sensing to action eventually realizes secure grasping of the object, provided that the object is of rectangular shape and motion is confined to a horizontal plane.

  • PDF

Visual Tracking of Objects for a Mobile Robot using Point Snake Algorithm

  • Kim, Won;Lee, Choon-Young;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.30-34
    • /
    • 1998
  • Path Planning is one of the important fields in robot technologies. Local path planning may be done in on-line modes while recognizing an environment of robot by itself. In dynamic environments to obtain fluent information for environments vision system as a sensing equipment is a one of the most necessary devices for safe and effective guidance of robots. If there is a predictor that tells what future sensing outputs will be, robot can respond to anticipated environmental changes in advance. The tracking of obstacles has a deep relationship to the prediction for safe navigation. We tried to deal with active contours, that is snakes, to find out the possibilities of stable tracking of objects in image plane. Snakes are defined based on energy functions, and can be deformed to a certain contour form which would converge to the minimum energy states by the forces produced from energy differences. By using point algorithm we could have more speedy convergence time because the Brent's method gives the solution to find the local minima fast. The snake algorithm may be applied to sequential image frames to track objects in the images by these characteristics of speedy convergence and robust edge detection ability.

  • PDF

Relocation of a Mobile Robot Using Sparse Sonar Data

  • Lim, Jong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.217-224
    • /
    • 2001
  • In this paper, the relocation of a mobile robot is considered such that it enables the robot to determine its position with respect to a global reference frame without any $\alpha$ priori position information. The robot acquires sonar range data from a two-dimensional model composed of planes, corners, edges, and cylinders. Considering individual range as data features, the robot searches the best position where the data features of a position matches the environmental model using a constraint-based search method. To increase the search efficiency, a hypothesize and-verify technique is employed in which the position of the robot is calculated from all possible combinations of two range returns that satisfy the sonar sensing model. Accurate relocation is demonstrated with the results from sets of experiments using sparse sonar data in the presence of unmodeled objects.

  • PDF

Determination of Object Position Using Robot Vision (로보트 비전을 이용한 대상물체의 위치 결정에 관한 연구)

  • Park, K.T.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.104-113
    • /
    • 1996
  • In robot system, the robot manipulation needs the information of task and objects to be handled in possessing a variaty of positions and orientations. In the current industrial robot system, determining position and orientation of objects under industrial environments is one of major problems. In order to pick up an object, the roblt needs the information about the position and orientation of object, and between objects and gripper. When sensing is accomplished by pinhole model camera, the mathematical relationship between object points and their images is expressed in terms of perspective, i.e., central projection. In this paper, a new approach to determine the information of the supporting points related to position and orientation of the object using the robot vision system is developed and testified in experimental setup. The result will be useful for the industrial, agricultural, and autonomous robot.

  • PDF

Predictive Maintenance of the Robot Trouble Using the Machine Learning Method (Machine Learning기법을 이용한 Robot 이상 예지 보전)

  • Choi, Jae Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • In this paper, a predictive maintenance of the robot trouble using the machine learning method, so called MT(Mahalanobis Taguchi), was studied. Especially, 'MD(Mahalanobis Distance)' was used to compare the robot arm motion difference between before the maintenance(bearing change) and after the maintenance. 6-axies vibration sensor was used to detect the vibration sensing during the motion of the robot arm. The results of the comparison, MD value of the arm motions of the after the maintenance(bearing change) was much lower and stable compared to MD value of the arm motions of the before the maintenance. MD value well distinguished the fine difference of the arm vibration of the robot. The superior performance of the MT method applied to the prediction of the robot trouble was verified by this experiments.

Development of Anthropomorphic Robot Hand and Arm by Tendon-tubes (텐던-튜브를 이용한 인체모방형 로봇핸드 및 암 개발)

  • Kim, Doo-Hyeong;Shin, Nae-Ho;Oh, Myoung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.964-970
    • /
    • 2014
  • In this study we have developed an anthropomorphic robot hand and arm by using tendon-tubes which can be used for people's everyday life as a robot's dynamic power transmission device. Most previous robot hands or arms had critical problem on dynamic optimization due to heavy weight of power transmission parts which placed on robot's finger area or arm area. In order to resolve this problem we designed light-weighted robot hand and arm by using tendon-tubes which were consisted of many articulations and links just like human's hand and arm. The most prominent property of this robot hand and arm is reduction of the weight of robot's power transmission part. Reduction of weight of robot's power transmission parts will allow us to develop energy saving and past moving robot hands and arms which can be used for artificial arms. As a first step for real development in this study we showed structural design and demonstration of simulation of possibility of a robot hand and arm by tendon-tube. In the future research we are planning to verify practicality of the robot hand and arm by applying sensing and controlling method to a specimen.

A study on approach of localization problem using landmarks (Landmark를 이용한 localization 문제 접근에 관한 연구)

  • 김태우;이쾌희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.44-47
    • /
    • 1997
  • Building a reliable mobile robot - one that can navigate without failures for long periods of time - requires that the uncertainty which results from control and sensing is bounded. This paper proposes a new mobile robot localization method using artificial landmarks. For a mobile robot localization, the proposed method uses a camera calibration(only extrinsic parameters). We use the FANUC arc mate to estimate the posture error, and the result shows that the position error is less than 1 cm and the orientation error less than 1 degrees.

  • PDF