• Title/Summary/Keyword: robot manipulators control

Search Result 425, Processing Time 0.025 seconds

A Study on Adaptive-Sliding Mode Control of SCARA Robot (스카라로보트의 적응-슬라이딩모드 제어에 관한 연구)

  • 윤대식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.148-153
    • /
    • 1999
  • In this paper, it is proposed the adaptive-sliding mode control technique which is new approach to implement the robust control of industrial robot manipulator with external disturbances and parameter uncertainties. Over the past decade, the design of advanced control systems for industrial robotic manipulators has been a very active area of research and two major design categories have emerged. Sliding mode control is a well-known technique for robust control of uncertain nonlinear systems. The robustness of sliding model controllers can be shown in continuous time, but digital implementation may not preserve robustness properties because the sampling process limits the existence of a true sliding mode. Adaptive control algorithm is designed by using the principle of the model reference adaptive control method based upon the hyperstability theory. The proposed control scheme has a simple structure is computationally fast and does not require knowledge of the complex dynamic model or the parameter values of the manipulator or the payload. Simulation results how that the proposed method not only improves the performance of the system but also reduces the chattering problem of sliding mode control. Consequently, it is expected that the new adaptive sliding mode control algorithm will be suited for various practical applications of industrial robot control system.

  • PDF

A robust controller design for robot manipulators with actuator dynamics (구동기의 동특성을 고려한 로봇매니퓰레이터의 강인제어기 설계)

  • 박광석;황동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.139-142
    • /
    • 1997
  • In this paper, a robust controller is proposed to achieve an accurate tracking for an uncertain nonlinear plant with actuator dynamics. The extent of parameter uncertainty can be quantified by using linear parameterization technique. A switching controller is proposed to guarantee the global asymptotic stability of the plant. In order to eliminate the chattering caused by the switching controller, a smoothing controller is designed using the boundary layer technique around the sliding surface and guarantees the uniform ultimate boundedness of the tracking error.

  • PDF

Self-Tuning Pole-Placement Control Of Robotic Manipulators With An Inverse Modela (로보트 매니퓰레이터의 역모델을 갖는 자기동조 극배치 제어)

  • 이은옥;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.50-53
    • /
    • 1988
  • This paper presents an approach to the position control of a robot manipulator by using a self-tuning pole-placement controller with an inverse model. The linearized independent difference equations of manipulator motion are obtained, and the parameters of these models are estimated on line. The controller is composed of two parts, the primary controller obtains desired torques by using an inverse model and the secondary controller computes variational torques on the basis of induced perturbation equations by minimizing a quadratic criterion with a closed-loop pole-placement. Simulation is performed to demonstrate the effectiveness of this approach.

  • PDF

반복 제어법을 이용한 정밀 제어

  • 전도영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.461-465
    • /
    • 1996
  • In servo systems such as the computer hard disk, surface mountiong device and robot manipulators, the high precision and high speed are increasingly demanding. In these examples, the repeatable errors exist and the repetitive controller removes these errors effectively by adding signals calculated from the previous cycle errors to the existing feedback controller. The experimental results of the position tracking control and contact force control show that the repetitive control effectively improves the precision of mechanical servo systems.

  • PDF

Input shaping filtering methods for the control of structurally flexible long-reach manipulators (구조적으로 유연하고 긴 로봇 매니퓰레이터의 제어를 위한 입력 Shaping 필터링 방법)

  • 황동환;권동수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.123-130
    • /
    • 1996
  • Due to high payload capacity and high length-to -cross-section ratio requirements, long-reach manipulator systems are expected to exhibit significant structural flexibility. To avoid structural vibrations during operations, various types of input shaping filtering methods have been investigated. A robust notch filtering method and an impulse shaping filtering method were investigated and implemented. In addition, two very different approaches have been developed and compared. One new approach, referred to as a

  • PDF

A Variable PID Controller for Robots using Evolution Strategy and Neural Network (Evolution Strategy와 신경회로망에 의한 로봇의 가변PID 제어기)

  • Choi, Sang-Gu;Kim, Hyun-Sik;Park, Jin-Hyun;Choi Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.1014-1021
    • /
    • 1999
  • PID controllers with constant gains have been widely used in various control systems. But it is difficult to have uniformly good control performance in all operating conditions. In this paper, we propose a variable PID controller for robot manipulators. We divide total workspace of manipulators into several subspaces. PID controllers in each subspace are optimized using evolution strategy which is a kind of global search algorithm. In real operation, the desired trajectories may cross several subspaces and we select the corresponding gains in each subspace. The gains may have large difference on the boundary of subspaces, which may cause oscillatory motion. So we use artificial neural network to have continuous smooth gain curves to reduce the oscillatory motion. From the experimental results, although the proposed variable PID controller for robots should pay for some computational burden, we have found that the controller is more superior to the conventional constant gain PID controller.

  • PDF

Optimal time control of multiple robot using hopfield neural network (홉필드 신경회로망을 이용한 다중 로보트의 최적 시간 제어)

  • 최영길;이홍기;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.147-151
    • /
    • 1991
  • In this paper a time-optimal path planning scheme for the multiple robot manipulators will be proposed by using hopfield neural network. The time-optimal path planning, which can allow multiple robot system to perform the demanded tasks with a minimum execution time and collision avoidance, may be of consequence to improve the productivity. But most of the methods proposed till now suffers from a significant computational burden and thus limits the on-line application. One way to avoid such a difficulty is to rearrange the problem as MTSP(Multiple Travelling Salesmen Problem) and then apply the Hopfield network technique, which can allow the parallel computation, to the minimum time problem. This paper proposes an approach for solving the time-optimal path planning of the multiple robots by using Hopfield neural network. The effectiveness of the proposed method is demonstrated by computer simulation.

  • PDF

Dynamic Model Parameter Estimation of Hydraulic Cylinder for Robot Manipulator Control (유압구동 로보트의 제어를 위한 유압 실린더 모델 파라미터 추정)

  • Choi, Myoung-Hwan
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.113-121
    • /
    • 1996
  • In the early developmental stages of robotics,hydraulics played an important role. As the power-to-weight ratio of electric motors increased, they eventually replaced hydraulic actuators in robot manipulators. Recently, however, task requirements have dictated that the manipulator payload capacity increase to accomodate greater payload, greater length, greater reaction forces, and hydraulic actusators are being studied as an effective form of robot actuation again. For efficient control of hydraulic actuators, the knowledge of its dynamic equation is essential. However, the dynamic equation of hydraulic actuators are nonlinear, and the dynamic coefficients are time varying. In this paper, an estimation algorithm of the dynamic coefficients of the hydraulic piston dynamics are formulated. Simulation results are presented to show the possibility of the parameter estimation.

  • PDF

On-line Adaptive Control for Robot Manupulators (로봇 매니퓰레이터의 실시간 적응 제어)

  • Lee, Min-Jung;Choi, Young-Kiu;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2729-2731
    • /
    • 2000
  • In this paper, we propose an adaptive controller using RBFN(radial basis function network) for robot manipulators. The structure of the proposed controller consists of a RBFN and a fixed gain PD controller. On the basis of the Lyapunov stability theorem, we guarantee the UUB (uniformly ultimately boundedness) for the total system. And the learning law of RBFN is established by the Lyapunov method. Finally, we apply the proposed controller to tracking control for the 2 link SCARA type robot manipulator.

  • PDF

Fuzzy Sliding Mode Controller for a Robot Manipulator with Passive Joints (수동 관절을 가진 로봇 매니퓰레이터를 위한 퍼지 슬라이딩 모드 기법을 이용한 제어기)

  • Kim, Won;Kim, Min-Seong;Shin, Jin-Ho;Lee, Ju-Jang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.31-38
    • /
    • 1999
  • In this paper, we proposed a fuzzy sliding mode controller for a robot manipulator with passive joints. A robot manipulator with passive joints which is not equipped with actuators is a kind of underactuated systerms. The control of underactuated manipulators is more difficult than that of fully-actuated ones. Though the sliding mode control technique has a robust charocteristics to prrarreter uncertainties and external disturbances, the chattering phenomena becorne one of the major problems in application to the real plant. plant.

  • PDF