• Title/Summary/Keyword: robot finger

Search Result 114, Processing Time 0.024 seconds

Miniature Ultrasonic and Tactile Sensors for Dexterous Robot

  • Okuyama, Masanori;Yamashita, Kaoru;Noda, Minoru;Sohgawa, Masayuki;Kanashima, Takeshi;Noma, Haruo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.215-220
    • /
    • 2012
  • Miniature ultrasonic and tactile sensors on Si substrate have been proposed, fabricated and characterized to detect objects for a dexterous robot. The ultrasonic sensor consists of piezoelectric PZT thin film on a Pt/Ti/$SiO_2$ and/or Si diaphragm fabricated using a micromachining technique; the ultrasonic sensor detects the piezoelectric voltage as an ultrasonic wave. The sensitivity has been enhanced by improving the device structure, and the resonant frequency in the array sensor has been equalized. Position detection has been carried out by using a sensor array with high sensitivity and uniform resonant frequency. The tactile sensor consists of four or three warped cantilevers which have NiCr or $Si:B^+$ piezoresistive layer for stress detection. Normal and shear stresses can be estimated by calculation using resistance changes of the piezoresitive layers on the cantilevers. Gripping state has been identified by using the tactile sensor which is installed on finger of a robot hand, and friction of objects has been measured by slipping the sensor.

A Study on a Precise Control of Position and Orientation of Robot Gripper for Forming Parts Handling in High Temperature (고열 단조부품 핸들링을 위한 로봇 그리퍼의 방위 및 포지션 정밀제어에 관한 연구)

  • Jeong, Yang-Keun;Kim, Mim-seong;Jo, Sang-Young;Won, Jong-Beom;Won, Jong-Dae;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • In this paper, we describe a new approch to control method of a four joints-robot gripper for the purpose of parts assemblying. The robot gripper is specifically modeled by using a 3D CAD program (ANSYS), considering artificial grippers, and then the proposed control method is illustrated through the dynamic simulation tool (Adams). Each gripper finger is individually controlled to be located at the optimal positions where the maximal joint torque can be calculated. To verified the effectiveness of the proposed control method, we proposed two cases for the reference position of gripper. By comparing the control performance of two method, the performance of the proposed control method was verified.

Development of Multi-Axis Force/Moment Sensor for Stroke Patient's Hand Fixing System Control (뇌졸중 환자의 손 고정장치 제어를 위한 다축 힘/모멘트센서 개발)

  • Kim, H.M.;Kim, J.W.;Kim, G.S.
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.351-356
    • /
    • 2011
  • Stroke patients should exercise for the rehabilitation of their fingers, because they can't use their hand and fingers. Their hand and fingers are fixed on the hand fixing system for rehabilitation exercise of them. But the hands clenched the fist of stroke patients are difficult to fix on it. In order to fix the hands and fingers, their palms are pressed with pressing bars and are controlled by reference force. The fixing system must have a five-axis force/moment sensor to force control. In this paper, the five-axis force/moment sensor was developed for the hand fixing system of finger-rehabilitation exercising system. The structure of the five-axis force/moment sensor was modeled, and designed using finite element method(FEM). And it was fabricated with strain-gages, then, its characteristic test was carried out. As a result, the maximum interference error is less than 2.43 %.

Knitted Data Glove System for Finger Motion Classification (손가락 동작 분류를 위한 니트 데이터 글러브 시스템)

  • Lee, Seulah;Choi, Yuna;Cha, Gwangyeol;Sung, Minchang;Bae, Jihyun;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.240-247
    • /
    • 2020
  • This paper presents a novel knitted data glove system for pattern classification of hand posture. Several experiments were conducted to confirm the performance of the knitted data glove. To find better sensor materials, the knitted data glove was fabricated with stainless-steel yarn and silver-plated yarn as representative conductive yarns, respectively. The result showed that the signal of the knitted data glove made of silver-plated yarn was more stable than that of stainless-steel yarn according as the measurement distance becomes longer. Also, the pattern classification was conducted for the performance verification of the data glove knitted using the silver-plated yarn. The average classification reached at 100% except for the pointing finger posture, and the overall classification accuracy of the knitted data glove was 98.3%. With these results, we expect that the knitted data glove is applied to various robot fields including the human-machine interface.

Design of an Economic Service Robot Hand Based on Biomimetics and TRIZ (생체 모방학과 트리즈를 이용한 보급형 서비스 로봇 핸드의 설계)

  • Ko, Hun-Keon;Cho, Chang-Hee;Kim, Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1741-1747
    • /
    • 2010
  • This work presents a study on the design of an economic service robot hand for tele-presence manipulators. The conceptual design of new robot hand is derived from biomimetics approach. Guided by the analysis of human arm' musculoskeletal structure, the fingers are actuated by cables and actuators in the forearm. High tension in the cables is achieved by screw-nut mechanism driven by DC motors. A set of combination springs is incorporated in each of the screw-nut mechanism for easy control of gripping force. The first prototype revealed difficulties with finger control and coupling problem between gripping force and wrist movement. The solutions to these problems have been derived from the contradiction analysis of TRIZ. The second design has been verified by tests on various objects with different weight and shape for full range of wrist motion.

On a Multi-Agent System for Assisting Human Intention

  • Tawaki, Hajime;Tan, Joo Kooi;Kim, Hyoung-Seop;Ishikawa, Seiji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1126-1129
    • /
    • 2003
  • In this paper, we propose a multi-agent system for assisting those who need help in taking objects around him/her. One may imagine this kind of situation when a person is lying in bed and wishes to take an object on a distant table that cannot be reached only by stretching his/her hand. The proposed multi-agent system is composed of three main independent agents; a vision agent, a robot agent, and a pass agent. Once a human expresses his/her intention by pointing to a particular object using his/her hand and a finger, these agents cooperatively bring the object to him/her. Natural communication between a human and the multi-agent system is realized in this way. Performance of the proposed system is demonstrated in an experiment, in which a human intends to take one of the four objects on the floor and the three agents successfully cooperate to find out the object and to bring it to the human.

  • PDF

Development of Direct Printed Flexible Tactile Sensors

  • Lee, Ju-Kyoung;Lee, Kyung-Chang;Kim, Hyun-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.3
    • /
    • pp.233-243
    • /
    • 2017
  • This paper proposes a structure of direct-printed flexible tactile-sensor. These flexible tactile sensors are based on pressure-sensing materials that allow pressure to be measured according to resistance change that in turn results from changes in material size because of compressive force. The sensing material consists of a mixture of multi walled carbon nanotubes (MWCNTs) and TangoPlus, which gives it flexibility and elasticity. The tactile sensors used in this study were designed in the form of array structures composed of many lines so that single pressure points can be measured. To evaluate the performance of the flexible tactile sensor, we used specially designed signal-processing electronics and tactile sensors to experimentally verify the sensors' linearity. To test object grasp, tactile sensors were attached to the surface of the fingers of grippers with three degrees of freedom to measure the pressure changes that occur during object grasp. The results of these experiments indicate that the flexible tactile sensor-based robotic gripper can grasp objects and hold them in a stable manner.

Compliance Analysis for Effective Peg-In-Hole Task (팩인홀 작업을 효율적으로 수행하기 위한 컴플라이언스 해석)

  • Kim, Byeong-Ho;Lee, Byeong-Ju;Seo, Il-Hong;O, Sang-Rok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.181-188
    • /
    • 2000
  • This paper deals with an analysis of the compliance characteristic for effective peg-in-hole task using robot hand without inter-finger coupling. We first observe the fact that some of coupling stiffness elements cannot be planned arbitrary. next we classify the task of inserting a peg-in-a-hole into two contact styles between the peg and the hole. Then we analyze the conditions of the specified stiffness matrix in the operational space to successfully and more effectively achieve the give peg-in-hole task for each case. It is concluded that the location of compliance center on the peg and the coupling stiffness element existing between the translational and the rotational direction play important roles for successful peg-in-hole task. Simulation results are included to verify the feasibility of the analytic results.

  • PDF

Force and Pose control for Anthropomorphic Robotic Hand with Redundancy (여유자유도를 가지는 인간형 로봇 손의 자세 및 힘 제어)

  • Yee, Gun Kyu;Kim, Yong Bum;Kim, Anna;Kang, Gitae;Choi, Hyouk Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.179-185
    • /
    • 2015
  • The versatility of a human hand is what the researchers eager to mimic. As one of the attempt, the redundant degree of freedom in the human hand is considered. However, in the force domain the redundant joint causes a control issue. To solve this problem, the force control method for a redundant robotic hand which is similar to the human is proposed. First, the redundancy of the human hand is analyzed. Then, to resolve the redundancy in force domain, the artificial minimum energy point is specified and the restoring force is used to control the configuration of the finger other than the force in a null space. Finally, the method is verified experimentally with a commercial robot hand, called Allegro Hand with a force/torque sensor.

Obstacle Information Transfer and Control Method using Haptic Device consist of Vibration Motors (진동모터로 구성된 햅틱 디바이스를 이용한 장애물 정보 전달 및 제어 방법)

  • Lee, Dong-Hyuk;Noh, Kyung-Wook;Kang, Sun Kyun;Han, Jong Ho;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1036-1043
    • /
    • 2014
  • In this paper, a new haptic device is proposed for the teleoperation, which can recognize the invisible environment of a mobile robot. With this new device, it is possible for the user to identify the location of an obstacle and to avoid it. The haptic device has been attached on the top of a joystick so that the user can remotely control the mobile robot to avoid the obstacles which are recognized by the ultrasonic sensors. Also, the invisible environment is recognized more accurately overlapping the data from the ultrasonic sensors. There are five vibration motors in the haptic device to indicate the direction of the obstacle. So the direction of the obstacle can be recognized by the vibration at the finger on each vibration motor. For various situations and surrounding environments, experiments are performed using fuzzy controller and overlapping ultrasonic sensors. The results demonstrate the effectiveness of the proposed haptic joystick.