• Title/Summary/Keyword: robot control software

Search Result 241, Processing Time 0.03 seconds

Positioning Accuracy on Robot Self-localization by Real-time Indoor Positioning System with SS Ultrasonic Waves

  • Suzuki, Akimasa;Kumakura, Ken;Tomizuka, Daisuke;Hagiwara, Yoshinobu;Kim, Youngbok;Choi, Yongwoon
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.100-111
    • /
    • 2013
  • Indoor real-time positioning for multiple targets is required to realize human-robot symbiosis. This study firstly presents positioning accuracy on an autonomous mobile robot controlled by 3-D coordinates that is obtained by a real-time indoor positioning system with spread spectrum (SS) ultrasonic signals communicated by code-division multiple access. Although many positioning systems have been investigated, the positioning system with the SS ultrasonic signals can measure identified multiple 3-D positions in every 70 ms with noise tolerance and error within 100 mm. This system is also robust to occlusion and environmental changes. However, thus far, the positioning errors in an autonomous mobile robot, controlled by these systems using the SS ultrasonic signals, have not been evaluated as an experimental study. Therefore, a positioning experiment for trajectory control is conducted using an autonomous mobile robot and our positioning system. The effectiveness of this positioning method for robot self-localization is shown, from this experiment, because the average control error between the target position and the robot's position at 29 mm is obtained.

A study on the development of an arc sensor and its interface system for a welding robot (용접로봇을 위한 아크센서 및 인?이스 시스템 개발에 관한 연구)

  • 배강열;이지형;정창욱
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.129-140
    • /
    • 1998
  • An interface system was developed to offer the welding capability to a robot controller which had not any embedded function for arc welding before, and also an arc sensor algorithm was proposed for weld seam tracking of the welding robot. For the interface system between the robot controller and welding equipments, data communication software and interface connections were composed. The interface system was mae to correspond welding condition, correction data, operation sequence and current status with the robot controller by mutual had shaking and digital signal transfer. Graphic user interface program developed under the environment of windows made it easy to monitor data communication and operation status, and to control welding and sensing sequence. Arc sensing algorithm proposed in this study to compensate torch position error was based on a fuzzy logic with the variables of current difference and current differenced change at torch weaving extremities. The developed interface system could be successfully implemented in between welding equipments and the robot controller, and showed normal status and exact function in data and signal communication between the systems. The whole robot welding system was then examined to verify its welding and seam tracking capabilities in horizontal fillet, vertical fillet, and 3-dimensional fillet weldment. The experiments revealed sound weld bead shapes and also good seam tracing results.

  • PDF

Dynamic Infrastructure for Personal Robot;DynI

  • Roh, S.G.;Park, K.H.;Yang, K.W.;Park, J.H.;Kim, H.S.;Lee, H.G.;Choi, H.R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2039-2044
    • /
    • 2003
  • The advanced infrastructure for accelerating the development of personal robots is presented. Based on this structure, effective ways for integrating the various commercial components and interfacing among them are studied. The infrastructure includes the technology such as modularization based on independent processing and standardization open to other developers. The infrastructure supports not only that each hardware component of a personal robot can be easily attached to and detached from the whole system mechanically but also that each software of the components can be functionally distributed. As a result, we developed the fully modularized personal robots mechanically, and a virtual machine for the control of these robots. In this paper the proposed infrastructure and its implementations are described.

  • PDF

Design of Emergency Fire Fighting and Inspection Robot Riding on Highway Guardrail

  • Ma, Xiaotong;Li, Xiaochen;Liu, Yanqiu;Tao, Xueheng
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.6
    • /
    • pp.833-843
    • /
    • 2022
  • Based on the problems of untimely Expressway fire rescue and backward traditional fire rescue methods, an emergency fire fighting and inspection robot riding on expressway guardrail is designed. The overall mechanical structure design of emergency fire fighting and inspection robot riding on expressway guardrail is completed by using three-dimensional design software. The target fire detection is realized by using the target detection algorithm of Yolov5; By selecting a variety of sensors and using the control method of multi algorithm fusion, the basic function of robot on duty early warning is realized, and it has the ability of intelligent fire extinguishing. The BMS battery charging and discharging system is used to detect the real-time power of the robot. The design of the expressway emergency fire fighting and inspection robot provides a new technical means for the development of emergency fire fighting equipment, and improves the reliability and efficiency of expressway emergency fire fighting.

Improvement of learning performance and control of a robot manipulator using neural network with adaptive learning rate (적응 학습률을 이용한 신경회로망의 학습성능개선 및 로봇 제어)

  • Lee, Bo-Hee;Lee, Taek-Seung;Kim, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.363-372
    • /
    • 1997
  • In this paper, the design and the implementation of the adaptive learning rate neural network controller for an articulate robot, which is being developed (or) has been developed in our Automatic Control Laboratory, are mainly discussed. The controller reduces software computational load via distributed processing method using multiple CPU's, and simplifies hardware structures by the time-division control with TMS32OC31 DSP chip. Proposed neural network controller with adaptive learning rate structure using expert's heuristics can improve learning speed. The proposed controller verifies its superiority by comparing response characteristics of conventional controller with those of the proposed controller that are obtained from the experiments for the 5 axis vertical articulated robot. We, also, present the generalization property of proposed controller for unlearned trajectory and the change of load through experimental data.

  • PDF

Implementation of Adaptive Movement Control for Waiter Robot using Visual Information

  • Nakazawa, Minoru;Guo, Qinglian;Nagase, Hiroshi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.808-811
    • /
    • 2009
  • Robovie-R2 [1], developed by ATR, is a 110cm high, 60kg weight, two wheel drive, human like robot. It has two arms with dynamic fingers. It also has a position sensitive detector sensor and two cameras as eyes on his head for recognizing his surrounding environment. Recent years, we have carried out a project to integrate new functions into Robovie-R2 so as to make it possible to be used in a dining room in healthcare center for helping serving meal for elderly. As a new function, we have developed software system for adaptive movement control of Robovie-R2 that is primary important since a robot that cannot autonomously control its movement would be a dangerous object to the people in dining room. We used the cameras on Robovie-R2's head to catch environment images, applied our original algorithm for recognizing obstacles such as furniture or people, so as to control Roboie-R2's movement. In this paper, we will focus our algorithm and its results.

  • PDF

Robust Adaptive Fault-Tolerant Control for Robot Manipulators with Performance Degradation Due to Actuator Failures and Uncertainties (구동기 고장과 불확실성으로 인한 성능 저하를 가지는 로봇 매니퓰레이터에 대한 강인한 적응 내고장 제어)

  • 신진호;백운보
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.173-181
    • /
    • 2004
  • In normal robot control systems without any actuator failures, it is assumed that actuator torque coefficients applied at each joint have normally 1's all the time. However, it is more practical that actuator torque coefficients applied at each joint are nonlinear time-varying. In other words, it has to be considered that actuators equipped at joints may fail due to hardware or software faults. In this work, actuator torque coefficients are assumed to have non-zero values at all joints. In the case of an actuator torque coefficient which has a zero value at a joint, it means the complete loss of torque on the joint. This paper doesn't deal with the case. As factors of performance degradation of robots, both actuator failures and uncertainties are considered in this paper at the same time. This paper proposes a robust adaptive fault-tolerant control scheme to maintain the required performance and achieve task completion for robot manipulators with performance degradation due to actuator failures and uncertainties. Simulation results are shown to verify the fault tolerance and robustness of the Proposed control scheme.

A development of a general purposed control system of robot end-effector for inspection and maintenance of steam generator heat pipe (증기발생기전열관의 검사정비로봇용 엔드이펙터의 범용 제어시스템 개발)

  • Park, Ki-Tae;Kim, Seon-Jin;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2013
  • The general purposed control system for driving a motion of many different typed robot end-effector, which consists of a controller based on ARM Cotex M3-11017 MCU and an application software for generating a motion of end-effector, was developed. Experimental results show that a positioning error is nearly negligible and a repeatability error is 0.04%. Accordingly the developed control system can be applied practically to actuate a robot end-effector for inspection and maintenance of steam generator heat pipe in nuclear power plant.

Design and Implementation of Linux based Real-Time Kernel for Robot Control (로봇 제어용 리눅스 기반 실시간 커널의 설계 및 구현)

  • 노현창;고낙용;김태영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.414-414
    • /
    • 2000
  • This paper presents a method for building a real-time kernel of autonomous mobile robot control systems. Until now, most of robots have their own operation softwares dedicated only for their use. Sometimes, operation softwares were developed based on MS-DOS or other real -time kernel based on UNIX. However, MS-DOS has many restrictions for use as a robot operation system. Also, mix based real-time kernel has some Limitations for use with mobile robots. So, in this paper, we focus on building a real-time kernel based on Linux. The in this paper, the software modules of Task Management, Memory Management, Intertask Communication, and Synchronization are redesigned. To show the efficiency of the paper, it was applied to run Nomad Super Scout II avoiding obstacles detected by sonar sensor array.

  • PDF

A Study on the Control of Hong Ik Direct Drive Arm Using TMS320C31 (TMS320C31을 이용한 홍익적접구동팔의 제어에 관한 연구)

  • Choi, Jong-Moon;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1222-1224
    • /
    • 1996
  • The Hong Ik Direct Drive Arm(HIDDA) is a SCARA typed direct drive manipulator with two degrees-of-freedom(DOF) using the direct drive motor of the NSK company. The direct NSK motors are used to give a large torque directly to the link, to reduce the modeling errors from the gears and chains. But, since the nonlinear coupling torques are transferred to the motor shaft without any reduction, we must consider a dynamic control algorithm. In this paper, we designed a robot controller for the HIDDA using a TMS320C31, which has the highest performance among the third DSP chips in the TI company. And we developed the integrated environment software of the robot management system to give the users an easy way of programming, running and simulation of the robot on the PC.

  • PDF