• Title/Summary/Keyword: robot's position control

Search Result 245, Processing Time 0.029 seconds

Realization of Differential Drive Wheeled Mobile Robot Dynamic Modeling Using Newton's Equilibrium law (뉴튼의 평행법칙을 이용한 차동구동 이동로봇의 동력학 모델링 구현)

  • Chung, Yong-Oug;Chung, Ku-Seob
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.349-358
    • /
    • 2010
  • We presents a dynamic modeling of 4-wheel 2-DOF. WMR. The classic dynamic model utilizes a greatly simplified wheel motion representation and using of a simplified dynamic model confronts with a problem for accurate position control of wheeled mobile robot. In this paper, we treats the dynamic model for describes relationship between the wheel actuator force/torque and WMR motion through the use of Newton's equilibrium laws. To calculate the WMR position in real time, we introduced the Dead-Reckoning algorithms and the simulation result show that the proposed dynamic model is useful. We can be easily extend the proposed WMR model to mobile robot of similar type and this type of methodology is useful to analyze, design and control any kinds of rolling robots.

A study on locomotion module of mobile robot for the blind guidance (맹인 안내용 mobile robot의 locomotion module에 관한 연구)

  • 김병수;신중섭;홍승홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.592-595
    • /
    • 1986
  • This paper presents a mobile of robot (for the blind) commanded by written course route on MAP. Its locomotion module is composed of PWM motor driving unit, wheel's rotation measurement unit and display and keyboard unit. In algorithm, "COMMAND" and "NEXT PREDICTED POSITION" for locomotion are computed from the MAP and the next position is compared with the measured one. Also, locomotion method for the convenience of the blind is discussed and experimentally demonstrated. In the experiment, the average speed of robot is 0.4m/sec and the computation error of the map is negligible.

  • PDF

Position Estimation Using Neural Network for Navigation of Wheeled Mobile Robot (WMR) in a Corridor

  • Choi, Kyung-Jin;Lee, Young-Hyun;Park, Chong-Kug
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1259-1263
    • /
    • 2004
  • This paper describes position estimation algorithm using neural network for the navigation of the vision-based wheeled mobile robot (WMR) in a corridor with taking ceiling lamps as landmark. From images of a corridor the lamp's line on the ceiling in corridor has a specific slope to the lateral position of the WMR. The vanishing point produced by the lamp's line also has a specific position to the orientation of WMR. The ceiling lamps have a limited size and shape like a circle in image. Simple image processing algorithms are used to extract lamps from the corridor image. Then the lamp's line and vanishing point's position are defined and calculated at known position of WMR in a corridor. To estimate the lateral position and orientation of WMR from an image, the relationship between the position of WMR and the features of ceiling lamps have to be defined. But it is hard because of nonlinearity. Therefore, data set between position of WMR and features of lamps are configured. Neural network are composed and learned with data set. Back propagation algorithm(BPN) is used for learning. And it is applied in navigation of WMR in a corridor.

  • PDF

Body Impedance Control for Walking Stabilization of a Quadrupedal Robot (4족 보행 로봇의 걸음새 안정화를 위한 몸체 임피던스 제어)

  • Lee, Soo-Yeong;Hong, Ye-Seon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.257-263
    • /
    • 2000
  • One of the basic assumptions in the static gait design for a walking robot is that the weight of leg should be negligible compared to that of body, so that the total gravity center is not affected by swing of a leg. Based on the ideal assumption of zero leg-weight, conventional static gait has been simply designed for the gravity center of body to be inside the support polygon, consisting of each support leg's tip position. In case that the weight of leg is relatively heavy, however, while the gravity center of body is kept inside the support polygon, the total gravity center of walking robot can be out of the polygon due to weight of a swinging leg, which causes instability in walking. Thus, it is necessary in the static gait design of a real robot a compensation scheme for the fluctuation in the gravity center. In this paper, a body impedance control is proposed to obtain the total gravity center based on foot forces measured from load cells of a real walking robot and to adjust its position to track the pre-designed trajectory of the corresponding ideal robot's body center. Therefore, the walking stability is secured even in case that the weight of leg has serious influence on the total gravity center of robot.

  • PDF

A study on an improvement of the robot motion control by the robot ergonomics (Robot Ergonomic에 의한 로보트의 동작제어 개선에 관한 연구)

  • 이순요;권규식
    • Journal of the Ergonomics Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.19-26
    • /
    • 1989
  • This study, as a part of integrated human-robot ergonomics, improves the robot motion control on the robot task in the TOES/WCS whose purpose is improving the teaching task constructed in the previous study. First, the updated combined fuzzy process using a new membership function with Weber's law is constructed for the purpose of coordinate reading of the end points in the macro motion control. Second, an algorithm using the geometric analysis is desinged in order to calculate position values and posture values of the robot joints. Third, the MGSLM method is designed to remove unnecessary the robot motion control caused by the GSLM method in the micro motion control. Consequently, proposed methods in this study lessen burdcn of a human of an improvement of the robot motion control and reduce the teaching time of a human operator and inaccuracy of the teaching task, which contribute to the integrated human-robot ergonomics.

  • PDF

LMI-Based Fuzzy Control for Wheeled Mobile Robot (바퀴형 이동로봇의 LMI기반 퍼지 제어)

  • Choi, Hyun-Eui;Kim, Tae-Kue;Park, Seung-Kyu;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1719_1720
    • /
    • 2009
  • Wheeled mobile robot has different mobility and steerability which determined by type of wheel and it's arrangement. Generally wheeled mobile robot's dynamics are nonlinear and various control methods have studied to control the mobile robot efficiently. In this paper, a T-S fuzzy modeling of a 2-wheeled mobile robot is mand a stable LMI-based state feedback fuzzy controller is designed and applied to the position control of the mobile robot for the reference trajectory following. Also, the verification of the designed controller is done by computer simulation.

  • PDF

Position Control of Robot Manipulator based on stereo vision system (스테레오 비젼에 기반한 6축 로봇의 위치 결정에 관한 연구)

  • 조환진;박광호;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.590-593
    • /
    • 2001
  • In this paper we describe the 6-axes robot's position determination using a stereo vision and an image based control method. When use a stereo vision, it need a additional time to compare with mono vision system. So to reduce the time required, we use the stereo vision not image Jacobian matrix estimation but depth estimation. Image based control is not needed the high-precision of camera calibration by using a image Jacobian. The experiment is executed as devide by two part. The first is depth estimation by stereo vision and the second is robot manipulator's positioning.

  • PDF

Design of an Absolute Location and Position Measuring System for a Mobile Robot

  • Kim, Dong-Hwan;Park, Young-Chil;Hakyoung Chung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1369-1379
    • /
    • 2001
  • This paper focuses on a development of a sensor system measuring locations of a vehicle to localize a mobile robot while it tracks on the track (location sensor) . Also it focuses on a system configuration identifying the vehicle's orientation and distance from the object while it is stationary at certain station (position sensor) . As for the location sensor it consists of a set of sensors with a combined guiding and counting sensor, and an address-coded sensor to localize the vehicle while moving on the rail. For the position sensor a PSD (Position Sensitive Device) sensor with photo-switches sensor to measure the offset and orientation of the vehicle at each station is introduced. Both sensor systems are integrated with a microprocessor as a data relay to the main computer controlling the vehicle. The location sensor system is developed and its performance for a mobile robot is verified by experiments. The position measuring system is proposed and is robust to the environmental variation. Moreover, the two kinds of sensor systems guarantee a low cost application and high reliability.

  • PDF

Development of Pressure Observer to Measure Cylinder Length of Harbor-Construction Robot (항만공사용 로봇의 실린더 길이 측정을 위한 압력 옵서버 개발)

  • Kim, Chi-Hyo;Park, Kun-Woo;Kim, Tae-Sung;Lee, Min-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.299-308
    • /
    • 2011
  • In this study, we develop a pressure observer to measure the cylinder length of a harbor-construction robot. For the robot control, sensors are required to measure the length of a hydraulic cylinder. The cylinder-position sensor is relatively expensive when the operating environment prohibits external approaches for the measurement of the cylinder position. LVDT or linear scales are usually mounted on the outside of the cylinder, which causes poor durability on a construction site. We use a pressure sensor to indirectly estimate the length of the cylinder. The pressure sensor is mounted inside a hydraulic valve box so that it is protected by the box and easy to waterproof for an underwater robot. By treating oil as a compressible fluid, we derive the nonlinear pressure dynamics as a function of the cylinder position, velocity, and pressure. The recursive least squares (RLS) algorithm is applied to identify the dynamic parameters, and the pressure observer estimates the cylinder position through the pressure acting on the head and the rod of the hydraulic cylinder. The position accuracy is relatively low, but it is acceptable for a construction robot that handles large armor stones.

A study on the improvement of the robot motion control as a part of the integrated human and robot ergonomics (Integrated Human and Rob-ot Ergonomics의 측면에서 로보트의 동작제어 개선에 관한 연구)

  • 이순요;권규식;홍승권
    • Journal of the Ergonomics Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.21-27
    • /
    • 1990
  • Teaching Expert System/World Coordinate System(TES/WDS) was proposed to improve robot motion control. First, precise coordinate reading for getting the inherent data about position and posture of task objects was performed throgh the integrated image and fuzzy processing. Second, singularity and parameter limitation problems in getting the motion data about position and posture of robot in macro motion were solved by proposed geometric algorithm. Third, the unnecessary robot motion was also removed by the Robot Time and Motion (RTM) method and the Multi-Geometric Straight-Line Motion (MGSLM) method in micro motion. This results demonstrated reduction of the average teaching task time according to task order.

  • PDF