• Title/Summary/Keyword: robot's position control

Search Result 245, Processing Time 0.029 seconds

Design and Implementation of A Hovering AUV with A Rotatable-Arm Thruster (회전팔 추진기를 가진 시험용 HAUV의 설계 및 구현)

  • Shin, Dong H.;Bae, Seol B.;Joo, Moon G.;Baek, Woon-Kyung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.3
    • /
    • pp.165-171
    • /
    • 2014
  • In this paper, we propose the hardware and software of a test-bed of a hovering AUV (autonomous underwater vehicle). Test-bed to develop as the underwater robot for the hovering -type is planning to apply for marine resource development and exploration for deep sea. The RTU that controls a azimuth thruster and a vertical thruster of test-bed is a intergrated-type thruster. The main control unit that collects sensor's data and performs high-speed processing and controls a movement of test-bed is a underwater hybrid navigation system. Also it transfers position, posture, state information of test-bed to the host PC of user using a wireless communication. The host PC checks a test-bed in real time by using a realtime monitoring system that is implemented by LabVIEW.

Tele-operating System of Field Robot for Cultivation Management - Vision based Tele-operating System of Robotic Smart Farming for Fruit Harvesting and Cultivation Management

  • Ryuh, Youngsun;Noh, Kwang Mo;Park, Joon Gul
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • Purposes: This study was to validate the Robotic Smart Work System that can provides better working conditions and high productivity in unstructured environments like bio-industry, based on a tele-operation system for fruit harvesting with low cost 3-D positioning system on the laboratory level. Methods: For the Robotic Smart Work System for fruit harvesting and cultivation management in agriculture, a vision based tele-operating system and 3-D position information are key elements. This study proposed Robotic Smart Farming, an agricultural version of Robotic Smart Work System, and validated a 3-D position information system with a low cost omni camera and a laser marker system in the lab environment in order to get a vision based tele-operating system and 3-D position information. Results: The tasks like harvesting of the fixed target and cultivation management were accomplished even if there was a short time delay (30 ms ~ 100 ms). Although automatic conveyor works requiring accurate timing and positioning yield high productivity, the tele-operation with user's intuition will be more efficient in unstructured environments which require target selection and judgment. Conclusions: This system increased work efficiency and stability by considering ancillary intelligence as well as user's experience and knowhow. In addition, senior and female workers will operate the system easily because it can reduce labor and minimized user fatigue.

An Improved Resampling Technique using Particle Density Information in FastSLAM (FastSLAM 에서 파티클의 밀도 정보를 사용하는 향상된 Resampling 기법)

  • Woo, Jong-Suk;Choi, Myoung-Hwan;Lee, Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.619-625
    • /
    • 2009
  • FastSLAM which uses the Rao-Blackwellized particle filter is one of the famous solutions to SLAM (Simultaneous Localization and Mapping) problem that estimates concurrently a robot's pose and surrounding environment. However, the particle depletion problem arises from the loss of the particle diversity in the resampling process of FastSLAM. Then, the performance of FastSLAM degenerates over the time. In this work, DIR (Density Information-based Resampling) technique is proposed to solve the particle depletion problem. First, the cluster is constructed based on the density of each particle, and the density of each cluster is computed. After that, the number of particles to be reserved in each cluster is determined using a linear method based on the distance between the highest density cluster and each cluster. Finally, the resampling process is performed by rejecting the particles which are not selected to be reserved in each cluster. The performance of the DIR proposed to solve the particle depletion problem in FastSLAM was verified in computer simulations, which significantly reduced both the RMS position error and the feature error.

A Study on Dynamic Modeling and Path Tracking Algorithms of Wheeled Mobile Robot using Inertial Measurement Units (구륜 이동 로보트의 동적 모델링과 관성측정장치를 이용한 경로추적 알고리즘에 관한 연구)

  • Kim, Ki-Yeoul;Im, Ho;Park, Chong-Kug
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.10
    • /
    • pp.64-76
    • /
    • 1998
  • In this paper, we propose the dynamic modeling, path planning and tracking algorithms of 4-wheeled 2-d.o.f.(degree of freedom) mobile robot(WMR). The gaussian functions are applied to design the smooth path of WMR. To calculate the WMR position in real time, we use three components of inertial measurement units(IMU). These units have initial error because of the rotation rate of earth, gravity acceleration and so on. Therefore we derive the initial error model of IMU, and compare the fitness diagnosis about probability characteristics of real data adn estimated data. The performance of IMU with error model and Kalman filter is compared to that without filter and error model. The simulation results show that the proposed dynamic model, path planning and tracking algorithms are more useful than the conventional control algorithm.

  • PDF

On the Integrated Operation Concept and Development Requirements of Robotics Loading System for Increasing Logistics Efficiency of Sub-Terminal

  • Lee, Sang Min;Kim, Joo Uk;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.85-94
    • /
    • 2022
  • Recently, consumers who prefer contactless consumption are increasing due to pandemic trends such as Corona 19. This is the driving force for developing the last mile-based logistics ecosystem centered on the online e-commerce market. Lastmile led to the continued development of the logistics industry, but increased the amount of cargo in urban area, and caused social problems such as overcrowding of logistics. The courier service in the logistics base area utilizes the process of visiting the delivery site directly because the courier must precede the loading work of the cargo in the truck for the delivery of the ordered product. Currently, it's carried out as automated logistics equipment such as conveyor belt in unloading or classification stage, but the automation system isn't applied, so the work efficiency is decreasing and the intensity of the courier worker's labor is increased. In particular, small-scale courier workers belonging to the sub-terminal unload at night at underdeveloped facilities outside the city center. Therefore, the productivity of the work is lowered and the risk of safety accidents is exposed, so robot-based loading technology is needed. In this paper, we have derived the top-level concept and requirements of robot-based loading system to increase the flexibility of logistics processing and to ensure the safety of courier drivers. We defined algorithms and motion concepts to increase the cargo loading efficiency of logistics sub-terminals through the requirements of end effector technology, which is important among concepts. Finally, the control technique was proposed to determine and position the load for design input development of the automatic conveyor system.

Dual Mode Feedback-Controlled Cycling System for Upper Limb Rehabilitation of Children with Cerebral Palsy

  • Cho, Seung-Yeon;Kim, Jihun;Seo, Seong-Won;Kim, Sung-Gyung;Kim, Jaehyo
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.231-236
    • /
    • 2019
  • Background/Objectives: This paper proposes a dual mode feedback-controlled cycling system for children with spastic cerebral palsy to rehabilitate upper extremities. Repetitive upper limb exercise in this therapy aims to both reduce and analyze the abnormal torque patterns of arm movements in three- dimensional space. Methods/Statistical analysis: We designed an exercycle robot which consists of a BLDC motor, a torque sensor, a bevel gear and bearings. Mechanical structures are customized for children of age between 7~13 years old and induces reaching and pulling task in a symmetric circulation. The shafts and external frames were designed and printed using 3D printer. While the child performs active/passive exercise, angular position, angular velocity, and relative torque of the pedal shaft are measured and displayed in real time. Findings: Experiment was designed to observe the features of a cerebral palsy child's exercise. Two children with bilateral spastic cerebral palsy participated in the experiment and conducted an active exercise at normal speed for 3 sets, 15 seconds for each. As the pedal reached 90 degrees and 270 degrees, the subject showed minimum torque, in which the child showed difficulty in the pulling task of the cycle. The passive exercise assisted the child to maintain a relatively constant torque while visually observing the movement patterns. Using two types of exercise enabled the child to overcome the abnormal torque measured in the active data by performing the passive exercise. Thus, this system has advantage not only in allowing the child to perform the difficult task, which may contribute in improving the muscle strength and endurance and reducing the spasticity but also provide customizable system according to the child's motion characteristic. Improvements/Applications: Further study is needed to observe how passive exercise influences the movement characteristics of an active motion and how customized experiment settings can optimize the effect of pediatric rehabilitation for spastic cerebral palsy.

Development of an Automated Layout Robot for Building Structures (건축물 골조공사 먹매김 시공자동화 로봇 프로토타입 개발)

  • Park, Gyuseon;Kim, Taehoon;Lim, Hyunsu;Oh, Jhonghyun;Cho, Kyuman
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.689-700
    • /
    • 2022
  • Layout work for building structures requires high precision to construct structural elements in the correct location. However, the accuracy and precision of the layout position are affected by the worker's skill, and productivity can be reduced when there is information loss and error. To solve this problem, it is necessary to automate the overall layout operation and introduce information technology, and layout process automation using construction robots can be an effective means of doing this. This study develops a prototype of an automated layout robot for building structures and evaluates its basic performance. The developed robot is largely composed of driving, marking, sensing, and control units, and is designed to enable various driving methods, and movement and rotation of the marking unit in consideration of the environment on structural work. The driving and marking performance experiments showed satisfactory performance in terms of driving distance error and marking quality, while the need for improvement in terms of some driving methods and marking precision was confirmed. Based on the results of this study, we intend to continuously improve the robot's performance and establish an automation system for overall layout work process.

Multi-functional Automated Cultivation for House Melon;Development of Tele-robotic System (시설멜론용 다기능 재배생력화 시스템;원격 로봇작업 시스템 개발)

  • Im, D.H.;Kim, S.C.;Cho, S.I.;Chung, S.C.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.3
    • /
    • pp.186-195
    • /
    • 2008
  • In this paper, a prototype tele-operative system with a mobile base was developed in order to automate cultivation of house melon. A man-machine interactive hybrid decision-making system via tele-operative task interface was proposed to overcome limitations of computer image recognition. Identifying house melon including position data from the field image was critical to automate cultivation. And it was not simple especially when melon is covered partly by leaves and stems. The developed system was composed of 5 major modules: (a) main remote monitoring and task control module, (b) wireless remote image acquisition and data transmission module, (c) three-wheel mobile base mounted with a 4 dof articulated type robot manipulator (d) exchangeable modular type end tools, and (e) melon storage module. The system was operated through the graphic user interface using touch screen monitor and wireless data communication among operator, computer, and machine. Once task was selected from the task control and monitoring module, the analog signal of the color image of the field was captured and transmitted to the host computer using R.F. module by wireless. A sequence of algorithms to identify location and size of a melon was performed based on the local image processing. Laboratory experiment showed the developed prototype system showed the practical feasibility of automating various cultivating tasks of house melon.

Adaptation of Motion Capture Data of Human Arms to a Humanoid Robot Using Optimization

  • Kim, Chang-Hwan;Kim, Do-Ik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2126-2131
    • /
    • 2005
  • Interactions of a humanoid with a human are important, when the humanoid is requested to provide people with human-friendly services in unknown or uncertain environment. Such interactions may require more complicated and human-like behaviors from the humanoid. In this work the arm motions of a human are discussed as the early stage of human motion imitation by a humanoid. A motion capture system is used to obtain human-friendly arm motions as references. However the captured motions may not be applied directly to the humanoid, since the differences in geometric or dynamics aspects as length, mass, degrees of freedom, and kinematics and dynamics capabilities exist between the humanoid and the human. To overcome this difficulty a method to adapt captured motions to a humanoid is developed. The geometric difference in the arm length is resolved by scaling the arm length of the humanoid with a constant. Using the scaled geometry of the humanoid the imitation of actor's arm motions is achieved by solving an inverse kinematics problem formulated using optimization. The errors between the captured trajectories of actor arms and the approximated trajectories of humanoid arms are minimized. Such dynamics capabilities of the joint motors as limits of joint position, velocity and acceleration are also imposed on the optimization problem. Two motions of one hand waiving and performing a statement in sign language are imitated by a humanoid through dynamics simulation.

  • PDF

An Underwater Inspection System to Detect Hull Defects of a Ship (수중용 선체외판 길함 검사용 장치 개발)

  • Kim, Young-Jin;Cho, Young-June;Lee, Kang-Won;Shon, Woonh-Hee
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.281-284
    • /
    • 2006
  • After building a ship in a shipyard, there are so many repeated inspection of welding seam defects and painting status before delivering to the ship's owner. An inspection on the bottom part of a ship in commercial service should be done in every two years for the purpose of safety and for the prevention of ship speed deterioration. conventional welding seam inspection systems are rely on the visual inspection by human or the ultrasonic inspection for the selective part of a ship. This paper suggests a remote controlled inspection system for the examination of large ships or steel structures. The proposed system moves in contact with the ship under inspection and have a CCD camera to provide visual-guidance information to a remotely located human worker. Additionally this system utilizes a weld line tracking algorithm for an optimal position control. We verified the effectiveness of the inspection system by experimental data.

  • PDF