• Title/Summary/Keyword: roadbed settlement

Search Result 72, Processing Time 0.018 seconds

Real-scale Accelerated Testing to Evaluate Long-term Performance for Bridge/Earthwork Transition Structure Reinforced by Geosynthetics and Cement Treated Materials (토목섬유와 시멘트처리채움재로 보강한 교량/토공 접속구조의 장기공용성 평가를 위한 실물가속시험)

  • Lee, Il-Wha;Choi, Won-Il;Cho, Kook-Hwan;Lee, Kang-Myung;Min, Kyung-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.251-259
    • /
    • 2014
  • The transition zone between an earthwork and a bridge effect to the vehicle's running stability because support stiffness of the roadbed is suddenly changed. The design criteria for the transition structure on ballast track were not particular in the past. However with the introduction of concrete track is introduced, it requires there is a higher performance level required because of maintenance and running stability. In this present paper, a transition structure reinforced with geosynthetics is suggested to improve the performance of existing bridge-earthwork transition structures. The suggested transition structure, in which there is reinforcing of the approach block using high-tension geosynthetics, has a structure similar to that of earth reinforced abutments. The utilized backfill materials are cement treated soil and gravel. These materials are used to reduce water intrusion into the approach block and to increase the recycling of surplus earth materials. An experiment was performed under the same conditions in order to allow a comparison of this new structure with the existing transition structure. Evaluation items are elastic displacement, cumulative settlement, and earth pressure. As for the results of the real-scale accelerated testing, the suggested transition structure has excellent performance for the reduction of earth pressure and settlement. Above all, it has high resistance the variation of the water content.

Wave Propagation on a High-speed Railway Embankment Using a Pile-slab Structure (파일슬래브구조가 적용된 고속철도 토공노반에서의 진동 전파)

  • Lee, Il Wha;Lee, Sung Jin;Lee, Su Hyung;Lee, Kang Myung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.278-285
    • /
    • 2013
  • The suppression of residual settlement is required on earthwork sections as concrete track is introduced. Use of pile-slab structure is one of the settlement restraining methods applied on soft ground. The slab distributes the upper embankment load and piles transfer the load from the slab to the stiff ground. While this method is very effective in terms of load transfer, it has not yet been established for dealing with the vibration transfer effects and interaction characteristics between a structure and the ground. It is possible that vibration caused by a moving train load is propagated in the upper embankment, because the slab acts as a reflection layer and waves are multi-reflected. In this present paper, wave propagation generated by a moving train load is evaluated in the time and frequency domains to consider a roadbed structure using an artificial impact load and field measured train load. The results confirmed the wave reflection effect on the pile-slab structure, if the embankment height is sufficient, vibration propagation can be stably restrained, whereas if the height is not sufficient, the vibration amplitude is increased.